

JavaScript®
For Kids

by Chris Minnick and Eva Holland

JavaScript® For Kids For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be
used without written permission. JavaScript is a registered trademark of Oracle, Inc. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED
BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH
A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For
 technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015945282

ISBN 978‐1‐119‐11986‐9 (pbk); ISBN 978‐1‐119‐11989‐0 (ebk); ISBN 978‐1‐119‐11988‐3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction ... 1

Part I: What Is JavaScript? Alert!
JavaScript Is Awesome! .. 5
Chapter 1: Programming the Web ..7
Chapter 2: Understanding Syntax ..22
Chapter 3: Giving and Receiving Data ...33
Chapter 4: Fiddling with Web Applications ..51

Part II: Animating the Web 69
Chapter 5: JavaScript and HTML ..71
Chapter 6: JavaScript and CSS ..89
Chapter 7: Building an Animated Robot ..104

Part III: Getting Operations 123
Chapter 8: Building Your Dream Car with Operands125
Chapter 9: Putting It Together with Operators136
Chapter 10: Creating Your Own JavaScript Word Game153

Part IV: Arrays and Functions 171
Chapter 11: Creating and Changing Arrays ...173
Chapter 12: Making It Functional ...190
Chapter 13: Creating a Wish List Program ..206

Part V: Freedom of Choice 231
Chapter 14: Making Decisions with the If...Else Statement233
Chapter 15: Doing Different Things with Switch252
Chapter 16: Choose Your Own Adventure ..267

Part VI: Loops .. 293
Chapter 17: What’s This Loop For? ..295
Chapter 18: Using While Loops ..309
Chapter 19: Building a Lemonade Stand ...326

Index ... 355

Table of Contents
Introduction .. 1

About This Book .. 1
Foolish Assumptions ... 3
Icons Used In This Book ... 3
Beyond the Book ... 4
Where to Go from Here ... 4

Part I: What Is JavaScript? Alert! JavaScript
Is Awesome! .. 5

Chapter 1: Programming the Web . 7
What Is Programming? .. 8
Talking to Computers .. 9
Choosing a Language .. 11
What Is JavaScript? ... 12
Get Your Browser Ready .. 15
Opening the Web Developer Tools ... 16
Introducing the JavaScript Console .. 18
Running Your First JavaScript Commands ... 19
Having Fun with Math ... 21

Chapter 2: Understanding Syntax 22
Saying Precisely What You Mean .. 23
Making a Statement ... 24
Following the Rules ... 25

Chapter 3: Giving and Receiving Data 33
Mastering Variables .. 34
Understanding Data Types ... 38
Prompting the User for Input ... 42
Responding to Input .. 44
Combining Input and Output ... 48

Chapter 4: Fiddling with Web Applications. 51
Introducing JSFiddle .. 52
Creating a JSFiddle Account ... 63
Sharing Your Fiddle ... 65
Saving Your App .. 67

vi JavaScript For Kids For Dummies

Part II: Animating the Web 69

Chapter 5: JavaScript and HTML . 71
Writing HTML ... 72
Knowing Your HTML Elements .. 78
Adding Attributes to Elements .. 81
Changing HTML with JavaScript .. 83

Chapter 6: JavaScript and CSS. 89
Meet Douglas the JavaScript Robot .. 90
CSS Basics ... 90
CSS Properties Give You Style ... 93
Customize Your Own JavaScript Robot! ... 103

Chapter 7: Building an Animated Robot 104
Changing CSS with JavaScript .. 105
Make Douglas Dance! .. 109

Part III: Getting Operations 123

Chapter 8: Building Your Dream Car with Operands . . . 125
Knowing Your Operands .. 126
Working with Objects .. 130
Configuring Your Dream Car .. 132

Chapter 9: Putting It Together with Operators 136
Introducing the Super‐Calculator .. 137
Super‐Calculator Tricks .. 150

Chapter 10: Creating Your Own JavaScript
Word Game. 153

Creating a Variable Story .. 154
Creating the Word Replacement Game ... 154

Part IV: Arrays and Functions 171

Chapter 11: Creating and Changing Arrays 173
What Are Arrays? ... 174
Creating and Accessing Arrays .. 175
Changing Array Element Values .. 176
Working with Array Methods ... 177
Learning the Ways of Arrays .. 178

vii Table of Contents

Chapter 12: Making It Functional 190
Understanding Functions ... 191
Knowing What Functions Are Made Of ... 193
Building Function Junction ... 196

Chapter 13: Creating a Wish List Program 206
Introducing the Wish List Program ... 207
Forking the Code .. 208
Writing the HTML .. 210
Writing the JavaScript Code ... 212

Part V: Freedom of Choice 231

Chapter 14: Making Decisions with the
If...Else Statement . 233

Boolean Logic ... 234
Introducing if...else Statements ... 236
Combining Comparisons with Logical Operators 238
Freshening Up the JavaScript Pizzeria .. 240

Chapter 15: Doing Different Things with Switch 252
Writing a Switch ... 253
Building the Activity‐of‐the‐Day Calendar .. 255

Chapter 16: Choose Your Own Adventure 267
Planning the Story ... 268
Playing the Game ... 269
Forking the Code .. 271
Tiptoeing through the HTML and CSS .. 272
Writing the Martian Rescue! JavaScript .. 276

Part VI: Loops ... 293

Chapter 17: What’s This Loop For? 295
Introducing the for Loop .. 296
Random Weather Forecasting .. 299

Chapter 18: Using While Loops . 309
Writing a while Loop ... 310
Coding the Lunch Game .. 312
Moving to Your Own Website .. 318

viii JavaScript For Kids For Dummies

Chapter 19: Building a Lemonade Stand 326
Playing the Game ... 327
A Lesson in Business ... 329
Building the Game ... 334
Improving the Lemonade Game ... 352

Index ... 355

Introduction
JavaScript For Kids For Dummies is an
introduction to the basics of JavaScript coding. In
each chapter, we walk you step‐by‐step through cre-
ating JavaScript programs for the web. Designed for
kids of all ages, with no coding experience, we strive
to introduce this technical topic in a fun, engaging,
and interactive way.

JavaScript is the most widely used programming lan-
guage in the world today. That’s why we think you’ve
made a great decision by beginning your journey into
the world of coding by picking up this book.

JavaScript is fun and easy to learn! With some determi-
nation and imagination, you’ll be on your way to creat-
ing your very own JavaScript programs in no time!

Just as the only way to Carnegie Hall is to practice,
practice, practice, the only way to become a better
programmer is to code, code, code!

About This Book
We seek to “de‐code” the language of JavaScript for you
and give you an understanding of the concepts. With
the ability to move at your own pace, JavaScript For
Kids For Dummies will get you up to speed. In this book,
you learn how to create fun games and programs. We
even show you how to customize and build your own
versions of the games that you can post to the web and
share with your friends!

Whether you know a little JavaScript or you’ve never
seen it before, this book shows you how to write
JavaScript the right way.

2 JavaScript For Kids For Dummies

Topics covered in this book include the following:

 ✓ The basic structures of JavaScript programs

 ✓ JavaScript expressions and operators

 ✓ Structuring your programs with functions

 ✓ Writing loops

 ✓ Working with JavaScript, HTML5, and CSS3

 ✓ Making choices with if...else statements

Learning JavaScript isn’t only about learning how to write the lan-
guage. It’s also about accessing the tools and the community that
has been built around the language. JavaScript programmers have
refined the tools and techniques used to write JavaScript over the
language’s long and exciting history. Throughout this book, we
mention important techniques and tools for testing, documenting,
and writing better code!

To make this book easier to read, you’ll want to keep in mind a
few tips. First, all JavaScript code and all HTML and CSS markup
appears in monospaced type like this:

document.write("Hi!");

The margins on a book page don’t have the same room as your
monitor likely does, so long lines of HTML, CSS, and JavaScript may
break across multiple lines. Remember that your computer sees
such lines as single lines of HTML, CSS, or JavaScript. We indicate
that everything should be on one line by breaking it at a punctua-
tion character or space and then indenting any overage, like so:

document.getElementById("thisIsAnElementInTheDocument").

addEventListener("click",doSomething,false);

HTML and CSS don’t care very much about whether you use
uppercase or lowercase letters or a combination of the two. But,
JavaScript cares a lot! In order to make sure that you get the cor-
rect results from the code examples in the book, always stick to
the same capitalizations that we use.

3 Introduction

Foolish Assumptions
You don’t need to be a “programming ninja” or a “hacker” to
understand programming. You don’t need to understand how the
guts of your computer work. You don’t even need to know how to
count in binary.

However, we do need to make a couple of assumptions about you.
We assume that you can turn your computer on, that you know
how to use a mouse and a keyboard, and that you have a working
Internet connection and web browser. If you already know some-
thing about how to make web pages (it doesn’t take much!), you’ll
have a jumpstart on the material.

The other things you need to know to write and run JavaScript
code are details we cover in this book, and the one thing you’ll
find to be true is that programming requires attention to details.

Icons Used In This Book
Here’s a list of the icons we use in this book to flag text and infor-
mation that’s especially noteworthy.

This icon highlights technical details that you may or may not find
interesting. Feel free to skip this information, but if you’re the
techie type, you might enjoy reading it.

This icon highlights helpful tips that show you easy ways or short-
cuts that will save you time or effort.

Whenever you see this icon, pay close attention. You won’t want
to forget the information you’re about to read — or, in some
cases, we’ll remind you about something that you’ve already
learned that you may have forgotten.

Be careful. This icon warns you of pitfalls to avoid.

4 JavaScript For Kids For Dummies

Beyond the Book
We’ve put together a lot of extra content that you won’t find in
this book. Go online to find the following:

 ✓ Cheat Sheet: An online Cheat Sheet is available at
www. dummies.com/cheatsheet/javascriptforkids.
Here, you find information on converting CSS property names
to JavaScript; a list of common web browser events that
JavaScript can respond to; and a list of words that can’t be
used as JavaScript variables, functions, methods, loop labels,
or object names.

 ✓ Web Extras: Online articles covering additional topics are
available at www.dummies.com/extras/javascript
forkids. In these articles, we cover things like HTML5 form
input tricks, how to name JavaScript variables, JavaScript
 troubleshooting tips, and more.

Where to Go from Here
Coding with JavaScript is fun, and when you get a little knowledge
under your belt, the world of interactive web applications is your
oyster! So buckle up! We hope you enjoy the book and our occa-
sional pearls of wisdom.

If you want to show us changes and improvements you make
to our games, or programs you come up with on your own,
you can do so on Facebook (www.facebook.com/watzthisco),
Twitter (www.twitter.com/watzthisco), or via email at
info@ watzthis.com. We’re excited to see what you come up with!

http://www.dummies.com/cheatsheet/javascriptforkids
http://www.dummies.com/extras/javascriptforkids
http://www.dummies.com/extras/javascriptforkids
http://www.facebook.com/watzthisco
http://www.twitter.com/watzthisco
mailto:info@watzthis.com

Part IPart I
What Is JavaScript?

Alert! JavaScript
Is Awesome!

For Dummies can help you get started with lots of
subjects. Visit www.dummies.com to learn more
and do more with For Dummies!

In this part . . .

 Programming the Web ... 7

 Understanding Syntax .. 22

 Giving and Receiving Data 33

 Fiddling with Web Applications 51

http://www.dummies.com

CHAPTER

1Programming
the Web

JavaScript is a powerful language that’s easy to learn!
In this chapter, we explain the basics of programming, tell you
what JavaScript is, and get you started with writing your first
JavaScript commands.

One of the most important parts of starting any new project is
to make sure you have your workshop stocked with all the
 correct tools. In this chapter, you install and configure all the
programs you need and start experimenting with some real
JavaScript programs!

8 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

What Is Programming?
A computer program is a series of instructions that can be under-
stood and followed by a computer. Computer programming, also
known as coding, is what we call it when we write these instruc-
tions. Computers can’t do things on their own. They need a com-
puter program to tell them what to do. Computer programmers
write code to make computers do all sort of things.

Another name for a computer program is software.

The women who invented
programming

Electronic computers as we know them were first invented in the 1930s. But
it was the middle of the 1800s when the first computer program — a set of
instructions designed to be carried out by a machine — was written.

The author of the first computer program — and, therefore, the world’s first
computer programmer — was a woman named Ada Lovelace. A mathemati-
cian in England, she was the first person to envision computers that could
do much more than just crunch numbers. She foresaw computers being
able to do all the things we use computers for today: including working with
words, displaying pictures, and playing music. Her unique insights earned
her the nickname “The Enchantress of Numbers.”

Compilers are programs for converting programming languages into
machine language. The first compiler was created by Grace Murray Hopper
in 1944. This invention led to computer programs that could run on different
types of computers, and eventually to JavaScript. Hopper is also credited
with being the inventor of the term debugging for fixing problems in com-
puter programs. The term was inspired by the removal of an actual moth
from an early computer. Hopper became known as “The Queen of
Software” or “Amazing Grace” for her contributions to modern computing.

9 Chapter 1: Programming the Web

Computer programs help people to do many thousands of things,
including the following:

 ✓ Playing music and videos

 ✓ Performing scientific experiments

 ✓ Designing cars

 ✓ Inventing medicines

 ✓ Playing games

 ✓ Controlling robots

 ✓ Guiding satellites and spaceships

 ✓ Creating magazines

 ✓ Teaching people new skills

Can you think of more examples of things that computers can do?

Talking to Computers
At the heart of every computer is a central processing unit (CPU).
This CPU is made up of millions of tiny, very fast switches (called
transistors) that can be either on or off. The position of each of
these switches at any time determines what the computer will do.

Software written by programmers tells these switches when to
turn on or off and in what combination by using binary codes.
Binary codes use zeros and ones to form letters, numbers, and
symbols that can be put together in order to perform tasks.

Every single thing that a computer does is the result of a different
combination of many zeros and ones. For example, to represent a
lowercase letter a, computers use the following binary code:

0110 0001

10 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Each zero or one in a binary number is called a bit, and a combi-
nation of eight bits is called a byte. When you hear the words
 kilobyte, megabyte, and gigabyte used to tell how big a file is, what
it’s talking about is the number of eight‐bit binary codes it takes
to store the file.

Table 1-1 lists the most commonly used storage sizes.

A typical small computer program might contain anywhere from a
couple kilobytes to a couple megabytes of instructions, images,
and other data. Because it’s unlikely that you have enough time in
your busy day to type out thousands, or even millions, of ones
and zeros, if you want to tell a computer what to do, you need a
translator who speaks both human languages and computer (or
machine) language. Computer programming languages are this
translator.

Every computer program is written using a computer program-
ming language. Programming languages allow you to write com-
plex series of instructions that can be translated (also known as
compiled) into machine language. Through compilation, these
instructions are eventually turned into binary codes that a
 computer can understand.

Table 1-1 How Many Bytes Is That?
Name Number of Bytes What It Can Store

Kilobyte (KB) 1,024 Two to three para-
graphs of text

Megabyte (MB) 1,048,576 800 pages of text

Gigabyte (GB) 1,073,741,824 250 songs (as MP3s)

Terabyte (TB) 1,099,511,627,776 350,000 digital pictures

Petabyte (PB) 1,125,899,906,842,624 41,943 Blu‐ray discs

11 Chapter 1: Programming the Web

Choosing a Language
People have created hundreds of different computer programming
languages. You might ask yourself why there are so many pro-
gramming languages, if they all essentially do the same thing:
translate human language into machine language. That’s an excel-
lent question!

There are a few main reasons why there are so many different
programming languages. New programming languages are written
to allow programmers to

 ✓ Write programs in new and better ways than were previously
available.

 ✓ Write programs for new or specialized types of computers.

 ✓ Create new kinds of software.

Examples of computer programming languages include the following:

 ✓ C

 ✓ Java

 ✓ JavaScript

 ✓ Logo

 ✓ Objective C

 ✓ Perl

 ✓ Python

 ✓ Ruby

 ✓ Scratch

 ✓ Swift

 ✓ Visual Basic

12 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Our short list of programming languages only scratches the
 surface. For a more complete list of programming languages, visit
http://en.wikipedia.org/wiki/List_of_programming_
languages.

With so many programming languages to choose from, how do
you know which one to use? In many cases, the answer is deter-
mined by what you want to do with the languages. For example, if
you want to program apps for the iPhone, you have three choices:
Objective C, JavaScript, or Swift. If you want to program games to
run on Mac or Windows, you have more choices, including C,
Java, or JavaScript. If you want to make an interactive website,
you need to use JavaScript.

Are you seeing a pattern here? JavaScript is everywhere.

What Is JavaScript?
In the early days of the web, every web page consisted of nothing
but plain text in different sizes with links between pages. There
were no web forms, there certainly wasn’t any animation, and
there weren’t even different styles of text or pictures!

We’re not complaining! When the web was new, it was exciting to
click from page to page and discover new things. Even more
 exciting was how easy the web made it for anyone to be able to
publish anything at all and have the potential for anyone else on
the Internet to read it.

But when people got a taste of what the web could do, they
wanted more features! Graphics, text colors, forms, and many
other features were introduced very quickly.

Of all the things that were invented in the earliest days of the web,
the thing that has had the biggest impact over the longest time
was JavaScript.

JavaScript was created in order to make it possible for web brows-
ers to be interactive. Interactive web pages can range from simple

http://en.wikipedia.org/wiki/List_of_programming_languages
http://en.wikipedia.org/wiki/List_of_programming_languages

13 Chapter 1: Programming the Web

forms that provide feedback when you make a mistake, to 3D
games that run in your web browser. Whenever you visit a website
and see something moving, or you see data appearing and chang-
ing on the page, or you see interactive maps or browser‐based
games, chances are, it’s JavaScript at work.

To see some examples of websites that are made possible by
JavaScript, open up your web browser and visit the following sites:

 ✓ ShinyText (http://cabbi.bo/ShinyText): ShinyText is an
experimental website that uses JavaScript to display a word.
You can adjust different properties of the word, such as
Reflection Power and Repulsion Power to see what effect these
changes have on how the letters in the word react when you
move them around with your mouse. Figure 1-1 shows
ShinyText in action.

Even if you don’t understand how it works (we sure don’t!),
ShinyText is fun to play with, and it’s a great example of what’s
possible with JavaScript.

Figure 1-1: ShinyText uses JavaScript to produce a 3D physics simulation.

http://cabbi.bo/ShinyText

14 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

 ✓ Interactive Sock Puppet (www.mediosyproyectos.com/
puppetic): Interactive Sock Puppet is another 3D animation.
This time, you can control the movements and facial expres-
sions of a JavaScript puppet. Figure 1-2 shows the Interactive
Sock Puppet looking quite happy.

 ✓ Facebook (www.facebook.com): Facebook uses a lot of
JavaScript (see Figure 1-3). When you see a smooth animation
or video playback, or when a list of posts updates by itself,
that’s JavaScript at work!

Some of these examples use some very advanced features of web
browsers. We recommend that you use the latest version of
Google Chrome to view these. The examples may not work in
older web browsers.

Figure 1-2: Interactive Sock Puppet lets you control a JavaScript dinosaur
sock puppet.

http://www.mediosyproyectos.com/puppetic
http://www.mediosyproyectos.com/puppetic
http://www.facebook.com

15 Chapter 1: Programming the Web

Get Your Browser Ready
The one essential tool that you need for working with JavaScript
is a web browser. You have many different web browsers to
choose from, and nearly all of them will do a great job running
JavaScript. Odds are, you already have a web browser on your
computer.

The most widely used web browsers today are Firefox, Safari,
Chrome, Internet Explorer, and Opera. For this book, we’ll be
using Chrome. Google Chrome is currently the most popular web
browser. It has a number of great tools for working with
JavaScript.

Figure 1-3: Facebook uses JavaScript to do everything.

16 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

If you don’t already have Chrome installed, you’ll need to download
and install it. You can install Chrome by opening any web browser
and going to www.google.com/chrome/browser/desktop.
Follow the instructions found on that page to install Chrome on
your computer. When you have Chrome installed, start it up.

In the next section, we show you the Chrome Developer Tools,
which help website designers and JavaScript programmers to see
exactly what’s going on inside the browser so they can write
 better web pages and programs.

Opening the Web Developer Tools
After you have Chrome installed and launched, look at the top of
the browser window. In the upper‐right corner, you see three
lines. This is the icon for the Chrome menu. If you expand the
Chrome menu, you see a list of options similar to those shown in
Figure 1-4.

Figure 1-4: The Chrome menu.

http://www.google.com/chrome/browser/desktop

17 Chapter 1: Programming the Web

If you scroll down to the bottom of this menu and select More
Tools, a new menu of options appears, as shown in Figure 1-5.
These secret tools are the JavaScript coder’s best friends.

Select Developer Tools from the More Tools menu. A new panel
opens at the bottom of your browser window that looks like
Figure 1-6.

The Developer Tools give you all the information you need for
finding out how any web page works, for testing and improving
your own web pages and JavaScript programs, and much more.

Notice that the there’s a menu at the top of the Developer Tools
with different options, including Elements, Network, Sources,
Timeline, Profiles, Resources, Audits, and Console. If you click
each of these, you’ll see a different set of options and data in the
Developer Tools panel.

We describe the different components of the Developer Tools as
they become necessary throughout this book, but for now, the
most important part of the Developer Tools is the one labeled
Console. Click the Console tab now.

Figure 1-5: The More Tools menu.

18 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Introducing the JavaScript Console
The Developer Tools Console, also known as the JavaScript
Console, shown in Figure 1-7, gives you information about the
JavaScript that’s currently running in the browser window.

If there are errors in the JavaScript code of a web page, you see
information about the errors in the console. This is a very helpful
tool and one of the main features of the JavaScript Console.

Another very cool capability of the console is that you can type
JavaScript into the console panel and it will run. In the next
 section, you learn why this is useful and how to do it.

The JavaScript Console is a useful tool for JavaScript program-
mers, but it also has the potential to be misused. If someone you
don’t know or trust asks you to paste code into the JavaScript
Console, make sure you understand what that code does first.

Figure 1-6: The Developer Tools.

19 Chapter 1: Programming the Web

Running Your First JavaScript
Commands

Now it’s time to start experimenting with some real JavaScript
code! If you don’t already have it open, open the JavaScript
Console by selecting it from the Other Tools menu under the
Chrome menu, or by clicking the Console tab in the Developer
Tools.

Follow these steps to run your first JavaScript commands:

1. Click inside the JavaScript console, near the >, to start insert-
ing code.

2. Type 1 + 1 and then press Return (Mac) or Enter (Windows).

The browser gives you the answer on the next line.

Notice that when the answer is returned to you, it has an arrow
on the left side of it that points to the left. This arrow indicates
that the value came from JavaScript rather than from your input.
Any value that comes from JavaScript is called a return value.
Every command that you run in JavaScript produces some sort of
return value.

Simple math is one thing, but JavaScript can do much, much
more. Let’s try out some other commands and see just how
quickly we can get some answers around here.

Figure 1-7: The JavaScript Console.

20 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Before we get started, let’s clean up the console and remove any
previous commands, errors, and return values in there. To clear
the console, look at the upper‐left corner and click the circle with
the line through it. Everything inside the console will be erased,
and now you’ve got a clean slate.

Click your mouse next to the > and try out the following
JavaScript commands. Make sure to press Return (Mac) or Enter
(Windows) after each one to see the results.

JavaScript Command Description
2000 – 37 This is a simple math problem, but this time

we’re using the minus sign to subtract the
 number on the right from the number on the left.

30 * 27 The asterisk (*) is how you tell JavaScript to
multiply numbers.

120 / 20 The forward slash (/) tells JavaScript to divide
the number on the left by the number on the
right.

"Your name" + " "
+ "is learning
JavaScript!"

Yes, you can add words together with
JavaScript! When you run a command that
adds words together, it’s called concatenation.
The result will be that the words are combined
into a single word.

Notice that the words in the above JavaScript
command are inside quotes. These quotes are
very important. We tell you exactly why they’re
important in Chapter 2.

Your name + + is
learning
JavaScript!

When you don’t use quotes, JavaScript doesn’t
like that one bit. It returns an error message
containing the keyword SyntaxError. A
 syntax error means that you’ve written some-
thing that isn’t valid JavaScript. Any time you
see a syntax error, it means that you’ve goofed.
Take a close look at your code and look for
typos, missing punctuation, or missing quotes.

21 Chapter 1: Programming the Web

Having Fun with Math
Now it’s your turn to try out some math problems on your own!
Clear out your commands and the return values and errors from
the previous section and experiment with the console.

Here are some ideas to get you started:

 ✓ Multiply together two decimal numbers.

 ✓ Run multiple commands in one line (for example, 1 + 1 *
4 / 8).

 ✓ Type a number without any symbols at all and then run it.

 ✓ Add a word (remember to use quotes!) to a number (without
quotes).

 ✓ Add a number (without quotes) to a word (with quotes).

 ✓ Combine your first name with the last name of your celebrity
crush. Remember to add a space between the first and last
name! For example, "Eva" + " " + "Harry Styles".

 ✓ Try to produce extremely large return values.

 ✓ Try to produce extremely small return values.

 ✓ Try to do an impossible math problem, such as dividing a
number by zero.

 ✓ Try multiplying a number by a word (in quotes). For example,
343 * "hi!". The result of this will be NaN, which stands for
“not a number.”

CHAPTER

2
Just as spoken languages have rules (called grammar),
computer programming languages have rules (called syntax).
When you understand the basic rules of speaking JavaScript, it
actually looks similar to English.

If you thought that your teacher correcting you when you say
“ain’t” was strict, wait until you see how strict JavaScript is! It
won’t even listen to a thing you say if you make certain kinds of
syntax errors.

In this chapter, you learn the basics of JavaScript syntax and
how to avoid being scolded by the syntax police!

Understanding
Syntax

 Chapter 2: Understanding Syntax 23

Saying Precisely What You Mean
In order to be compiled correctly into machine language
 instructions, programs need to be written very precisely.

Chapter 1 explains what a program is and how programs are
translated into machine language using the process called
compilation.

As a programmer, your job is to think about the big picture of
what you want the program to do, and then break it down into
bite‐size steps that can be accomplished by the computer without
errors. For example, if you wanted to ask a robot to go downstairs
and get you a sandwich, you might start your instructions
like this:

1. Rotate head toward stairs.

2. Use visual sensors to look for obstacles.

3. If an obstacle is found, determine what it is.

4. If the obstacle is a cat, try to lure the cat away from the top of
the stairs by:

• Throwing a toy down the hall

• Speaking the cat’s name

• Gently nudging the cat with your hand until it walks away

5. If there is no obstacle, rotate left foot in the direction of the
stairs.

6. Place left foot in front of right foot.

7. Look for an obstacle.

8. Determine whether you’re at the top of the stairs.

Part I: What Is JavaScript? Alert! JavaScript Is Awesome! 24
9. If you’re not at the top of the stairs, rotate right foot in the

direction of the stairs.

10. Place right foot in front of left foot.

11. Repeat steps 1 through 10 until you’re at the top of the stairs.

You’ve written 11 instructions already and the robot hasn’t even
started walking down the stairs, much less making a sandwich!

A real computer program to tell a robot to go downstairs and
make a sandwich would need to contain far more detailed instruc-
tions than the ones shown here. At each step along the way, each
motor would need to be told precisely how long to turn on, and
each possible condition and obstacle would need to be described
and dealt with in detail.

All these instructions need to be written as individual JavaScript
commands, or statements.

You can find out more about how to control robots with
JavaScript by visiting http://nodebots.io!

Making a Statement
In English, we talk in sentences. In JavaScript, a single instruction
to the computer is called a statement. Like a sentence, statements
are made up of different parts and have certain rules that they
must follow in order to be understood.

Listing 2-1 shows an example of a statement.

Listing 2-1 A JavaScript Statement

alert("Coding is fun!");

This statement causes a web browser to open up a popup alert
window with the sentence “Coding is fun!” If you type this

http://nodebots.io

 Chapter 2: Understanding Syntax 25
statement into the JavaScript Console in Chrome, you’ll see some-
thing like what’s shown in Figure 2-1.

Notice that the statement in Listing 2-1 contains a keyword, some
symbols (parentheses and quotes), and some text (Coding is
fun!), and it ends with a semicolon.

Just as an infinite number of sentences can be written using
English, an infinite number of statements can be written with
JavaScript.

The word alert is an example of a JavaScript keyword. Many
JavaScript statements begin with keywords, but not all of them do.

The semicolon is what separates one statement from another, just
as a period separates one sentence from another. Every statement
should end with a semicolon.

Following the Rules
JavaScript has several rules that must be obeyed if you want your
computer to understand you. The first two rules are:

 ✓ Spelling counts.

 ✓ Spacing doesn’t count.

Let’s take a look at each of these rules in more detail. We’ll write a
new message printer program to serve as an example. Listing 2-2
is a JavaScript program that prints out the words “Coding is fun!”
300 times.

Figure 2-1: The output of a JavaScript alert statement.

Part I: What Is JavaScript? Alert! JavaScript Is Awesome! 26
Listing 2-2 A Program to Print a Message 300 Times

for (var i = 0; i < 300; i++) { document.write ("Coding is

fun!"); }

Follow these steps to test this program:

1. Open the Chrome web browser.

2. Open the JavaScript Console from the More Tools menu under
the Chrome menu.

You can also use the keyboard combination to open the
JavaScript Console. Press ⌘+Option+J (Mac) or Ctrl+Shift+J
(Windows).

3. Type the program in Listing 2-2 onto one line in the JavaScript
Console and press Return (Mac) or Enter (Windows).

If you entered everything correctly, you’ll see the message app-
ear in your browser window 300 times, as shown in Figure 2-2.

Figure 2-2: The result of running the program in Listing 2-2.

 Chapter 2: Understanding Syntax 27
This “Coding is fun!” program uses a technique called a for loop
in order to do something many times with only a little bit of code.
We talk more about for loops in Chapters 17 and 18.

Take a close look at the code in Listing 2-2. Notice that the text
that gets written to the browser window is enclosed in quotes.
The quotes indicate that this text is to be treated as words, rather
than as JavaScript code.

Using text in strings
In programming, we call a piece of text inside of quotes a string.
You can remember this name by thinking of text inside quotes like
a piece of string with letters, numbers, and symbols tied to it.
These letters stay in the same order and each one takes up a
 certain amount of space on the string.

For example, try typing the code from Listing 2-2 into your
JavaScript console again, but change Coding is fun! to
another message, such as what you want for lunch or dinner.

Figure 2-3 shows the output of the program from Listing 2-2 when
the message is changed to “I want pizza for lunch!”

Any character you can type can be put into a string. However,
there’s one important exception that you need to remember: If
you want to use quotation marks inside a string, you have to tell
JavaScript that the quotation marks are part of the string, rather
than the end of the string.

The way to put quotation marks inside a string is by using a back-
slash (\) before the quotation marks. Using the backslash in a
string tells JavaScript that the next character is something special
and doesn’t mean what it normally would mean. When you add a
backslash before a quotation mark in a string, it’s called escaping
the quotation mark.

For example, if you want to change the string to:

Joe said, "Hi!"

Part I: What Is JavaScript? Alert! JavaScript Is Awesome! 28

You would need to write the string as:

"Joe said, \"Hi!\""

Listing 2-3 shows our message printer program with escaped
 quotation marks in the message.

Listing 2-3 Escaping Quotation Marks

for (var i = 0; i < 300; i++) { document.write ("Joe said,

\"Hi!\""); }

You might be asking yourself now, “If the backslash is used to tell
JavaScript that the next character is special, how do I print out a
backslash?” Great question! The answer is just to use two backs-
lashes (\\) for each backslash that you need to print out.

As with most things in JavaScript, there is another way to use
quotes inside a string: by surrounding the string with different
quotes. JavaScript doesn’t care whether you use single quotes (')
or double quotes (") to mark text as a string, as long as you use
the same type of quotes at the beginning and end of the string.

Figure 2-3: Changing a string only changes the string.

 Chapter 2: Understanding Syntax 29
If you surround your string with single quotes, you can use all the
double quotes that you want inside the string, without escaping
them. But single quotes must be escaped.

If you surround your string with double quotes, you can use all
the single quotes you want inside the string, but double quotes
must be escaped.

Listing 2-4 shows the message printer program with the string in
single quotes and double quotes inside the string.

Listing 2-4 Double Quotes within Single Quotes

for (var i = 0; i < 300; i++) { document.write (' Joe

said, "Hi!" '); }

Using text in code
Unlike in strings, the contents and spelling of text outside of
quotes matters a lot. When text isn’t surrounded by quotes (single
or double) in JavaScript, it’s considered part of the code of the
JavaScript program.

JavaScript code is very picky about spelling and capitalization.
In JavaScript code, the following words are completely different:

FOR

for

For

Only the one in the middle means anything special to JavaScript.
If you try to use the other two in the message printer program,
you’ll get an error, as shown in Figure 2-4.

The special meaning of for is explained in Chapter 17.

JavaScript is also very picky about spelling. Many times, when
we’re coding and something just isn’t working right, the problem
turns out to be that we accidentally left out a letter or mixed up
the order of two letters.

Part I: What Is JavaScript? Alert! JavaScript Is Awesome! 30

Just as typos in writing often go unnoticed, these types of errors
can be very difficult to track down, so get into the habit early on
of typing slowly and carefully and you’ll save yourself a lot of time
in the long run!

Paying attention to white space
White space is all the spaces, tabs, and line breaks in your pro-
gram. JavaScript ignores white space between words and between
words and symbols in code. For example, in our message printer
program, we could make the whole thing easier for people to read
by spacing it out over multiple lines, as shown in Listing 2-5.

Listing 2-5 White Space Makes Programs Easier to Read

for (var i = 0; i < 300; i++) {

 document.write ("Coding is fun!");

}

Listing 2-5 shows the way that we would recommend spacing out
this program.

Notice that we’ve inserted line breaks after the opening curly
bracket ({) and before the ending curly bracket (}). Curly brackets
are used for grouping pieces of code (also called statements)
together into what’s called a block. In this program, they mark the
part of the program that should be repeated 300 times — namely,
printing out a message.

Curly brackets are a good spot to put some white space to help
you read the code more easily. Another great spot to put a line

Figure 2-4: Capitalizing a JavaScript keyword wrong produces errors.

 Chapter 2: Understanding Syntax 31
break is after each semicolon (;). In JavaScript, the semicolon is
used to mark the end of a statement, much as a period is used to
mark the end of a sentence in English.

If you try to run the program split over three lines in the
JavaScript Console in Chrome, you’ll get an error message when
you press Return (Mac) or Enter (Windows) after the first line.
This is because the console tries to run your code every time you
press Return or Enter, and the first line (ending with {) isn’t a
complete JavaScript statement. To enter this code into the con-
sole with line breaks, hold down the Shift key while pressing
Return or Enter after each of the first two lines.

Notice that the statement between the curly brackets is indented.
The indentation helps people reading the code to see that this
statement is happening inside another statement — namely, the
for statement that creates the loop.

We recommend using either two spaces or four spaces to indent
statements. Some people use tabs to indent statements. Which
one you use is up to you. Once you decide, however, stick with it.
If you use two spaces to indent code inside of a block, you
shouldn’t sometimes use four spaces or a tab. Neatness counts!

Making comments
JavaScript comments are a way that you can put text into a pro-
gram that isn’t a string or a statement. This may not sound so
great, but the thing that makes comments so important and useful
is precisely that they don’t cause JavaScript to do anything at all.

Programmers use comments within their code for several reasons:

 ✓ To tell their future selves, and anyone else who works on the
program in the future, why they wrote something in the partic-
ular way they did

 ✓ To describe how the code they wrote works

Part I: What Is JavaScript? Alert! JavaScript Is Awesome! 32
 ✓ To leave themselves a note telling what they still need to do,
or to list improvements that they intend to make at a later date

 ✓ To prevent JavaScript statements from running

JavaScript has two different kinds of comments: single‐line and
multi‐line.

 ✓ Single‐line comments: Single‐line comments cause everything
following them on the same line to be a comment. To create a
single‐line comment, use two slashes (//) back to back. For
example, in Listing 2-6, the first three lines are single‐line
 comments and the fourth line contains a statement that will
be executed, followed by a comment.

 ✓ Multi‐line comments: Multi‐line comments are comments
that can be more than one line long. To create a multi‐line
comment, start with /* and end the comment with the exact
reverse, */. Listing 2-7 shows an example of a multi‐line
comment.

Listing 2-6 Single‐Line Comments

// The following code won’t run.

// alert("Watch out!");

// The next statement will run.

alert("Have a nice day!"); // pops up a nice message

Listing 2-7 A Multi‐Line Comment

/*

AlertMe, by Chris Minnick and Eva Holland

A program to alert users that they are

using a JavaScript program called AlertMe,

which was written by Chris Minnick and Eva

 Holland.

*/

CHAPTER

3Giving and
Receiving Data

Programs come in many different sizes and have many
different purposes. Here are three things all programs have in
common:

 ✓ A way to receive information from the user

 ✓ A way to give information back to the user

 ✓ A way to store and work with information in between giving
and receiving

Information, or data, that a program receives from a user is
called input. What the program gives back to the user is called
output. In the time between when a program receives input and
produces output, it needs some way to store and work with the
various types of data that has been inputted, so it can produce
output.

The question of whether it’s better to give or receive isn’t
important! It’s all good. In this chapter, you learn how
JavaScript can help you to get, receive, and just plain have data!

34 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Mastering Variables
In the real world, when you want to store something, give some-
thing away (as a gift, for example), move something, or organize
something, you often put it in a box.

JavaScript doesn’t care about heart‐shaped boxes of chocolates or
shoeboxes with the latest sneakers. What JavaScript loves is data.
To store and move around data, JavaScript uses a special kind of
box called a variable. A variable is a box you can assign a name to.
This name will represent all the data contained in that box, or
variable.

Variables make it possible for the same program to work with
 different input to produce different output.

Creating variables
Creating a variable in JavaScript is pretty simple. To create a vari-
able, you use the var keyword, followed by the name of the vari-
able, and then a semicolon, like this:

var book;

As a programmer, you have a lot of flexibility when naming your
variables. You can be very creative in naming your variables, but
you don’t want to get too crazy. Most important, your variable
names should accurately describe the data that you store
inside them.

Each of the following variable declarations creates a variable with
a good and descriptive name. By looking at them, you can proba-
bly guess what the data stored inside them looks like.

var myFirstName;

var favoriteFood;

var birthday;

var timeOfDay;

Notice how we separate words in variable names by using capital
letters for every word after the first one. Variable names can’t

35 Chapter 3: Giving and Receiving Data

contain spaces, so programmers have created several other ways
to separate words. This particular style is called camelCase. Can
you guess why it has that name?

After looking at these examples, what would you name variables
for storing the following pieces of data?

 ✓ Your pet’s name

 ✓ Your favorite school subject

 ✓ The age of your best friend

 ✓ Your street address

In addition to the rule that variable names must not contain
spaces, there are several other rules that you must follow:

 ✓ Variable names must begin with a letter, an underscore (_),
or a dollar sign ($).

 ✓ Variable names can only contain letters, numbers, under-
scores, or dollar signs.

 ✓ Variable names are case sensitive.

 ✓ Certain words may not be used as variable names, because
they have other meanings within JavaScript. These so‐called
reserved words are as follows:

break case class catch

const continue debugger default

delete do else export

extends finally for function

if import in instanceof

let new return super

switch this throw try

typeof var void while

with yield

36 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Storing data in variables
After you’ve created a variable, you can store any sort of data
inside it. When the data is in there, you can recall it at any time.
Let’s try it out!

1. Open the JavaScript Console in Chrome.

2. Create a new variable named book by typing the following and
then pressing Return (Mac) or Enter (Windows):

var book;

You’ve created your container, or variable, and named it “book.”

When you press Return or Enter, the JavaScript Console dis-
plays the word undefined. This is exactly what you want to
happen. JavaScript is just telling you that your code ran
 correctly and that it doesn’t have anything to tell you.

It may seem funny that JavaScript tells you that it has nothing
to tell you. But, trust us, it’s way better that it says something,
even if it’s just undefined than if it were to give you the cold
shoulder and say nothing at all.

3. Put a value into your new variable by typing the following
code.

book = "JavaScript For Kids For Dummies";

You’ve now put data inside your variable, where it will be
stored.

When you press Return or Enter, JavaScript responds with the
name of the book.

You only need to type var when you first create and name
your variable. When you want to change the data inside your
variable, you only need to use the variable’s name.

37 Chapter 3: Giving and Receiving Data

4. Now, temporarily forget the name of this book. Got it? Now,
imagine that you need to recall the name of this book so that
you can tell your friend about it! To recall the data, or value, in
a variable, you can just type the name of the variable in the
console. So, type the following:

book

The console recalls the string that was assigned to the book
variable and prints it out, as shown in Figure 3-1.

Notice that we didn’t use a semicolon (;) when typing — we
just used a variable name in the JavaScript Console. The name
of a variable isn’t a full JavaScript statement, so it doesn’t
require a semicolon. We’re just asking JavaScript for the value
of the variable, just as if we had asked it 1 + 1.

5. Now try changing the value of the book variable by typing the
following statement into the JavaScript Console:

book = "The Call of the Wild";

6. Type book into the JavaScript Console to retrieve its new
value.

The console prints out “The Call of the Wild” (or whatever you
entered as the new value of book.

Figure 3-1: Printing out the value assigned to a variable.

38 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

In addition to text, variables can also hold several other different
types of data. In the next section, we show you each of the basic
(also known as primitive) data types that JavaScript understands.

The data inside a variable can also be called the value of a variable.

Understanding Data Types
JavaScript variables have just one job — to hold and store data —
and they do this job quite well. Using and creating variables are
easy. There are many different types of data in the world, such as
numbers, letters, and dates. JavaScript makes some important
 distinctions between these and other different kinds of data that
you, as a coder, need to be aware of.

Data types are how a program knows whether 03‐20‐2017 is a date
(March 20, 2017) or a math problem (subtract 20 from 3 and then
subtract 2017 from the result).

JavaScript recognizes three basic data types: string, number, and
Boolean.

The string data type
The string data type holds text. We explain the basics of how
strings work in Chapter 2, but there are a few other cool tricks
that you can do with strings besides just storing and printing
them.

One cool string trick is to count how many characters the string is
made up of. The way you do that is to use .length after the
string, or after a variable holding the string.

For example, to find out the length of the string held inside
the book variable you create in the previous section, type
book.length into the console. The console responds right away
with a number, as shown in Figure 3-2.

39 Chapter 3: Giving and Receiving Data

Every string, even an empty string, has a length. The length of an
empty string, of course, is 0. Because it’s something that
describes a string, we call length a property of a string.

You see the word property used a lot when people talk about
JavaScript. A property is something that describes or is a part of
something. For example, a car’s color is a property of the car, a
person’s name is a property of the person, and a string’s length is
a property of the string.

In addition to finding out the length of a string stored in a vari-
able, you can also just attach the length property to a string in
quotes to find out its length:

"I am a string.".length

Count the letters in this sentence. There are 10 — 11 if you
count the period at the end of the sentence. But when you enter
this command into the JavaScript console, you get 14. Do you
know why?

The spaces in a string count just as much as the letters, punctua-
tion, symbols, and numbers in the string. To use the analogy we
make in Chapter 2, it’s all just knots on the string (14 of them to
be precise) to JavaScript.

In addition to properties, strings also have things that they can
do, or that can be done to them. In programming, we call these
things that can be done with or to something its methods.

Figure 3-2: Getting the length of a string.

40 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

The most commonly used string method is indexOf. The job of
indexOf is to look at your string, find a certain character or
group of characters inside it, and tell you what position they’re at.
In the following statement, we look for the position of the word
am in a string:

"I am a string.".indexOf("am");

When you run this statement in the console, the result is 2. Try
retyping the command, but this time look for the capital I.

"I am a string.".indexOf("I");

The result is 0.

This brings us to a very important concept in JavaScript called
zero‐based numbering. Unlike people, who have ten fingers and
generally start counting at the number one, JavaScript starts
counting at zero. So, in the previous example, when JavaScript
wants to tell you that I is the first character in the string, it says
that I is at position 0.

If JavaScript were on a sports team, it would proudly wear a shirt
that read “We’re number 0!”

The number data type
Another type of data that JavaScript understands is the number
data type. Numbers can be positive or negative, as well as whole
numbers or decimal numbers. Numbers are stored in variables
without using quotation marks.

The range of possible numbers that can be used in JavaScript
goes from very, very small to very, very large. We won’t bore you
with a bunch of zeros right now, but the biggest number that you
can use in JavaScript is far greater than the number of stars in the
universe. It’s even bigger than the number of atoms in the uni-
verse! JavaScript can do any math problem or counting problem
that you would want it to do.

41 Chapter 3: Giving and Receiving Data

One thing to watch out for, however, is what happens when you try
to combine two different data types, such as strings and numbers.

JavaScript generally tries to be pretty clever. If you open the con-
sole and type “10” + 10, JavaScript will assume that you meant for
both pieces of data to be strings, and will put them together and
give you the result 1010.

On the other hand, if you type 10 * “10”, JavaScript will assume
that you meant for the string "10" to actually be the number 10,
and it will give you the result 100. JavaScript does this because it
knows there is no way to multiply two strings together.

The Boolean data type
The Boolean data type can store one of two possible values: true
or false.

Boolean values are the result when you do comparisons in
JavaScript, which we cover in more detail in Part V of this book.
If you ask JavaScript something like: “Is 3 equal to 30?,” it will
respond with a Boolean value of false.

The Boolean data type is named after the mathematician George
Boole, so it’s always capitalized.

Let’s do a few experiments with Booleans. Open the JavaScript
Console and try typing each of the following statements, pressing
Return or Enter after each one to see the result. Note that we’ve
used a single‐line comment after each statement to explain what it
means. You don’t need to type these comments into the console,
but you can if you want.

1 < 10 // Is 1 less than 10?

100 > 2000 // Is 100 greater than 2000?

2 === 2 // Is 2 exactly equal to 2?

false === false // Is false exactly equal to false?

40 >= 40 // Is 40 greater than or equal to 40?

42 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Boolean (0) // What is the Boolean value of 0?

Boolean (false) // What is the Boolean value of false?

"apples" === "oranges" // Is "apples" exactly equal to

"oranges"?

"apples" === "apples" // Is "apples" exactly equal to

"apples"?

In addition to the statements you would expect to be false,
JavaScript also considers the following values to be false:

0 null undefined

"" (an empty string) false

Prompting the User for Input
Now that you know how variables can hold different types of data,
let’s explore the process of getting data from a user and storing it
inside your variables.

One way to ask a user for data is by using the prompt command.
To try out the prompt command, open the JavaScript console and
type the following:

prompt("What is your name?");

After you press Return or Enter, a pop‐up window appears in your
browser window with a text field, as shown in Figure 3-3.

After you enter your name and click OK, the pop‐up window
 disappears, and the value that you entered in the pop‐up displays
in the console, as shown in Figure 3-4.

That’s all well and good if all you want to do is capture data and
immediately repeat it back like a parrot. But what if you want to
do something with the user‐entered data? To do that, you need to
store it in a variable.

43 Chapter 3: Giving and Receiving Data

Storing user input
To store user‐entered data in a variable, you create a new variable
and then follow it with =. You then follow it with the prompt
statement.

var username = prompt("What is your name?");

It’s important to note that a single equal sign (=) in JavaScript is
called the assignment operator. Its job is to put the value on the
right into the variable on the left. We talk more about operators in
Chapter 9.

Figure 3-3: Prompting the user for input.

Figure 3-4: Displaying your name.

44 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

When you press Return or Enter, a pop‐up window appears in
your browser, just as before.

When you enter your name in the pop‐up window and click OK,
the JavaScript Console prints out undefined, indicating that the
statement is finished and there’s nothing else for it to do.

To see the value you just entered, you can type the variable
name into the console. JavaScript responds with the value of
the variable, as shown in Figure 3-5.

Responding to Input
Now that you know how to get data from the user, and how to
store that data, let’s take a look at two of the ways that you can
use JavaScript to respond to the user.

Using alert()
The alert() command pops up a notification box in the user’s
browser containing whatever data is between the parentheses.

Figure 3-5: Getting the value of a variable from a prompt.

45 Chapter 3: Giving and Receiving Data

If you want to display an alert with a simple string message, you
can do so by enclosing a message within quotes between the
(and) after alert. For example, type the following statement
into your JavaScript Console:

alert("Good job!");

When you press Return or Enter, the browser displays an alert
message containing the message “Good job!”

You display numbers in alerts by putting numbers without quotes
between the parentheses. For example, try this statement:

alert(300);

The alert pop‐up displays the number 300. You can even do math
inside an alert. For example, try this one:

alert(37*37);

The alert displays the result of multiplying 37 and 37.

If you put a word between the parentheses in the alert state-
ment without quotes, JavaScript treats the word as a variable. Try
running the following two statements:

var myNameIs = "your name";

alert(myNameIs);

The browser pops up a window containing your name.

By combining different data types into one alert statement, you
can start to do some really interesting and useful things. For
example, try typing each of the following statements into the
JavaScript Console, one at a time:

var firstName = "your name";

var yourScore = 30;

alert("Hi, " + firstName + ". Your current score is: " +

yourScore);

46 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

As you can see, by using alert(), you can create all sorts of fun
and interesting pop‐ups to entertain and inform the user, such as
the alert in Figure 3-6.

Figure 3-6: Creating interesting pop‐ups.

The special life of objects
Objects are a special data type in JavaScript, like numbers and strings.
However, objects are flexible and can store data about anything using
properties and methods.

You can picture JavaScript objects as being like objects in the real world.
For example, in the real world, you can have a yellow truck. In JavaScript,
this yellow truck object would have a color property of yellow and we
would write it like this:

truck.color="yellow";

The truck would also have a method called drive, and we would write
that like this:

truck.drive();

47 Chapter 3: Giving and Receiving Data

Using document.write()
In JavaScript, a web page is called a document. When you change
something on the current web page using JavaScript, you do so by
telling JavaScript to change the document object.

One way to make changes to the current web page is by using the
write method.

A method is something that can be done or that something can do.

Every document (or web page) has a write method that causes
whatever you put between the parentheses after the method
name to be inserted into the web page. You can use document.
write() in the same ways that you used alert(). For example,
open a new, blank browser window and try out the following
statements in your JavaScript Console:

document.write("Hi, Mom!");

document.write(333 + 100);

Notice that statements after the first one are added right after the
first statement, without a line break or space. You can add space
after or before writing text with document.write by using the
characters
. For example:

document.write("How are you?
");

document.write("I'm great! Thanks!
");

document.write("That's awesome!");

You can clear out the current contents of the browser window
by typing chrome://newtab into the browser address bar or by
opening a new browser tab.

The result of entering these three lines into the JavaScript
Console is shown in Figure 3-7.

 is an HTML tag. We talk much more about HTML in
Chapter 5.

48 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Combining Input and Output
Now, let’s combine input and output to display customized out-
put, based on input from a user. This is really the heart of what
JavaScript can do for web pages!

Follow these steps in the JavaScript Console to create a letter to
yourself in your web browser. Make sure to press Return or Enter
after the end of each statement (after each semicolon).

1. Type the following to create a variable containing your first
name.

var toName = "your name";

2. Type the following to create a variable containing the person
the letter is from:

var fromName = "The Grammy Awards";

You can change The Grammy Awards to anyone you’d like to
get a letter from.

Figure 3-7: Three lines of text in a browser.

49 Chapter 3: Giving and Receiving Data

3. Type the contents of your letter into a variable.

Use
 to insert line breaks and don’t press Return or Enter
until after you type the semicolon.

Here’s the letter we came up with:

var letterBody = "We are pleased to inform you that your song,

'Can\'t Stop Coding!,' has been voted the Best Song

of All Time by the awarding committee.";

4. Write document.write() statements to output each of the
three parts of your letter.

For example:

document.write("Dear " + toName + ",

");

document.write(letterBody + "

");

document.write("Sincerely,
");

document.write(fromName);

When your letter is done, it should resemble ours, shown in
Figure 3-8.

50 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Figure 3-8: A fully customized letter displayed in the browser.

CHAPTER

4Fiddling with Web
Applications

In Chapter 1, we explain and demonstrate the JavaScript
Console. In Chapters 2 and 3, we show you how to put multiple
statements together to form a program. In this chapter, we kick
things up a notch and introduce you to our favorite JavaScript
playground: JSFiddle. Instead of swings and slides, you’ll be
playing with JavaScript statements, HTML tags, and CSS styles.

JSFiddle lets you write and experiment with JavaScript code
from within your web browser. You can use it to try out code,
get feedback on your code, share your code, and even work on
programs with your friends! You’ll learn how to use JSFiddle to
view, modify, save, and share JavaScript web applications, too.

You may be wondering what we mean by web application. A web
application (or web app) is software that runs in a browser and
is usually powered by JavaScript. Google Earth, for example, is a
popular web app you may be familiar with. It can look up and
show you nearly any place on Earth in high‐resolution photos.
Google Earth is also a website because you can access it using a
web address, or URL. Do you think JSFiddle is a web app, a web-
site, or both? It’s actually both. In fact, every web application is
a website. Not all websites are web applications, however.

In this chapter, you use JSFiddle to experiment with some anima-
tions. In the end, you have a JavaScript bubble machine that you
can customize as much as you want! It’s called JSFiddle because
you can use it to “fiddle” with JavaScript. So, let the fiddling begin!

52 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Introducing JSFiddle
To get started with JSFiddle, open your web browser and type
http://jsfiddle.net into the address bar. You’ll see the JSFiddle
website, shown in Figure 4-1.

JSFiddle’s user interface window consists of three panes where
you can enter different types of code including HTML, CSS, and
JavaScript. You see the results of what you type inside these
boxes in the Result pane. The toolbar on the left lets you config-
ure additional options, and the top toolbar has buttons for
 running, saving, and cleaning up your code.

You can resize any of the panes in JSFiddle by clicking and
 dragging the border that separates them.

For now, we’re mostly concerned with the JavaScript pane. The
JavaScript pane works in much the same way as the JavaScript
Console. With JSFiddle, the code you enter won’t execute until
you tell it to run.

Figure 4-1: JSFiddle’s clean and compartmentalized user interface.

53 Chapter 4: Fiddling with Web Applications

Follow these steps to run your first JSFiddle program:

1. Click inside the JavaScript pane.

2. Type the following JavaScript statement:

alert("Hi, everyone!");

3. Click the Run button on the top toolbar.

A pop‐up window containing the message “Hi, everyone!”
appears.

4. Close the pop‐up window by clicking OK.

There’s nothing surprising in the behavior of that simple
JavaScript program. If you’ve read the first three chapters of this
book, you’re already familiar with how the alert statement
works.

Running JavaScript isn’t the only great thing JSFiddle can do. With
JSFiddle, you can also use the HTML and CSS panes to run code
that works together with your JavaScript code! In the next few
sections, we cover each of these panes in more detail and demon-
strate their use. But first, we give a quick demonstration of what
JSFiddle is capable of.

Viewing our fiddles
We’re going to let you in on a secret. Every program in this book
is available for you to view, run, copy, and play around with at
http://jsfiddle.net/user/forkids/fiddles. That’s right!
We’ve done your homework! We’ve formatted it nicely for you and
tested it out.

This is our own JSFiddle public dashboard. The public dashboard
is where any JSFiddle user can share programs (known as
 “fiddles” in JSFiddle) with the world.

http://jsfiddle.net/user/forkids/fiddles

54 Part I: What Is JavaScript? Alert! JavaScript Is Awesome!

Although we’ve typed up every project for you already, it’s impor-
tant that you go through each step of every project for yourself so
that you really understand. To get the most out of this book, feel
free to copy, modify, completely change, and rewrite our code to
see what it does and make it your own! Keep on fiddlin’!

Playing with fiddles
Before you get too carried away with viewing all the cool projects
from other parts and chapters, take a look at some programs that
aren’t part of this book. JSFiddle lets anyone create an account
and share their programs in a public dashboard — and many
excellent and very experienced JavaScript programmers do!

When programmers share their programs on JSFiddle, they agree
that anyone who wants to can make a copy of their work, change
it, and republish it. However, it’s always polite to give the original
author credit when you borrow code. We’ve made copies of each
of the programs below so that we can be sure that they’ll be the
same when you view them. If you want to find out who the original
author of a program is, open Fiddle Options from the left naviga-
tion bar.

Follow these steps to view and run some of the programs in our
list of amazing JSFiddle demos:

1. Go to our public dashboard at http://jsfiddle.net/
user/forkids/fiddles.

You see a list of all the examples and projects from the entire
book.

You may need to use the page navigation at the bottom of the
list to see additional pages of results.

2. Find a demo that sounds interesting to you and open it.

When the program opens, it will automatically start running.

If you find a program that you like, try figuring out how it works!
Change some values to see what happens.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

55 Chapter 4: Fiddling with Web Applications

Anything that you do to a program in JSFiddle won’t overwrite the
original. You can try changing things all you want, and no harm
will come of it. The worst that can happen is that the program
won’t run.

Fiddling with CSS
The CSS pane in JSFiddle is located in the upper‐right corner.
Besides working with JavaScript in JSFiddle, we can also fiddle
with the Cascading Style Sheets (CSS) in our web application. CSS
allows you to change how elements such as text and graphics
appear. If you want to change the color of the text on your page,
you use CSS.

We cover CSS in much more detail in Chapter 6. For now, follow
these steps to try out changes to one of our programs:

1. Go to http://jsfiddle.net/forkids/vaj023L5.

You see the Bubbles demo, shown in Figure 4-2.

Figure 4-2: The Bubbles demo.

238 Part V: Freedom of Choice

Listing 14-2 expands the program from Listing 14-1 to create a
variable called speaksJavaScript when you enter JavaScript
into the prompt.

If you type in JavaScript correctly, the statement within the if
block will execute, displaying a special message for JavaScript
speakers only. If you enter anything other than JavaScript, the
statement within the else block will execute, so that a different
message will display.

Listing 14-2 Using Single‐Word Operators

var language = prompt("What language do you speak?");

if (language === "JavaScript") {

 alert("Great! Let's talk JavaScript!");

 var speaksJavaScript = true;

} else {

 alert("I don't know what you're saying.");

}

if (speaksJavaScript) {

 alert("It's great to meet you.");

}

Combining Comparisons
with Logical Operators

Logical operators allow you to combine more than one compari-
son operation. For example, let’s say you own a pizza parlor. Your
policy is that if a customer’s order is more than $10 and they live
within the city limits, they get free delivery.

In JavaScript, this rule requires two comparisons:

 ✓ Is the order over $10?

 ✓ Is the customer located within the city limits?

239 Chapter 14: Making Decisions with the If...Else Statement

In order for the customer to get free delivery, both of these condi-
tions have to be true. If one of these conditions is not true, the
delivery charge is $5.

In JavaScript, you can specify that two conditions both need to be
true by using the and operator (&&). To use the and operator in an
if...else statement, you put it between two comparison
expressions. Then you surround the whole combination expres-
sion with parentheses.

Listing 14-3 shows how you might write your pizza parlor’s
 delivery rule in JavaScript.

Listing 14-3 Pizza Parlor Free Delivery Rule in JavaScript

if ((deliveryCity === "Anytown") && (orderPrice > 10)) {

 var deliveryPrice = 0;

 } else {

 var deliveryPrice = 5;

 }

As a special deal, you might decide to offer free delivery to people
when it’s their birthday, no matter how far away they live or the size
of their order. In order to do this, you need to use the or operator
(||). You type the or operator by holding down the Shift key and
pressing the backslash (\) character on your keyboard twice.

Listing 14-4 shows how to write the new free delivery policy in
JavaScript.

Listing 14-4 Free Delivery on Your Birthday

if (((deliveryCity === "Anytown") && (orderPrice > 10)) ||

(birthday === "yes")) {

 var deliveryPrice = 0;

 } else {

 var deliveryPrice = 5;

 }

In the next section, we start with this free delivery policy and
 create a program for managing several different parts of your
pizza parlor.

240 Part V: Freedom of Choice

Freshening Up the JavaScript Pizzeria
The JavaScript Pizzeria is a little mom‐and‐pop place in Anytown,
USA. They pride themselves on making good pizzas at a good
price and keeping things simple.

Currently, they have a web page where you can order one of
their two kinds of pizza — cheese or pepperoni — and have it
delivered to you for free if you live inside the city limits of
Anytown, USA.

Customers are demanding more, though! They want additional
pizza options. And people in other cities have been hearing about
JavaScript Pizzeria, and they want pizza delivered, too! Some
 people have even asked for a special deal on their birthday!

As the JavaScript programmer for the JavaScript Pizzeria, it’s your
job to whip up these new features so that the business continues
to thrive! Don’t worry, we’re here to help.

Running the app
To test out the current version of the JavaScript Pizzeria website,
follow these steps:

1. Go to our public dashboard on JSFiddle at
 http:// jsfiddle.net/user/forkids/fiddles.

2. Find the program named “Chapter 14 – JavaScript Pizzeria –
Start” and click its title to open it.

3. Enter a number of pizzas, select a pizza type, and press the
Place Order button.

The total (at $10 per pizza) will display below the form.

That’s all there is to it! Move on to the next section to create your
own version of the JavaScript Pizzeria that you can add new
 features to.

http://jsfiddle.net/user/forkids/fiddles

241 Chapter 14: Making Decisions with the If...Else Statement

Forking the code (or just using your hands)
Follow these steps to create your own copy of the JavaScript
Pizzeria program that you can add new features to:

1. Open the program named “Chapter 14 – JavaScript
Pizzeria – Start.”

2. Click the Fork button in the top menu bar.

3. Change the name of the program in the Fiddle Options on the
left menu.

4. Click Update to save your changes, and then click Set as Base.

Great! You’re ready to get started!

Planning the pizza parlor program
improvements
Here are the three changes that we’ll make to the JavaScript
Pizzeria program:

 ✓ Add a new kind of pizza and charge extra for it.

 ✓ Add new cities and calculate delivery charges for them.

 ✓ Display the delivery charge.

 ✓ Add a birthday special.

Each of these changes requires an if...else statement, as well
as some small changes to the HTML.

Adding the new item to the menu
The most important new feature at this point is to spruce up the
menu. The cook has invented a new kind of pizza that has bacon,
arugula, apples, 14 different kinds of cheese, and a corn dog on
top. He calls it the Supreme pizza.

242 Part V: Freedom of Choice

The problem is, the Supreme pizza is very expensive to make —
mostly because of that corn dog! It’s so difficult to find a gourmet
corn dog in Anytown! So, the owner has decided to charge an
extra $2 for each Supreme pizza.

Your job is to add the Supreme pizza to the menu and update the
price when it gets ordered. Follow these steps to get started:

1. Look in the HTML pane to find the place where the list of piz-
zas is created.

It currently looks like this:

 <label>What kind of pizzas?

 <select id="typePizza">

 <option value="cheese">Cheese</option>

 <option value="pepperoni">Pepperoni</option>

 </select>

 </label>

2. Add a new option element inside the select element to cre-
ate the Supreme pizza option.

It should have a value of "supreme", and the label (between
<option> and </option>) should read Supreme.

3. Click Update to save your work, and then test to make sure
that Supreme shows up as a new option in the pizza type drop‐
down list, as shown in Figure 14-2.

4. Find the calculatePrice() function.

It looks like this:

function calculatePrice(numPizzas, typePizza) {

 var orderPrice = Number(numPizzas) * 10;

 var extraCharge = 0;

 // calculate extraCharge, if there is one

 orderPrice += extraCharge;

 return orderPrice;

}

243 Chapter 14: Making Decisions with the If...Else Statement

5. Right below the comment that reads calculate
 extraCharge, if there is one, type the following
if...else statement:

 if (typePizza === "supreme") {

 extraCharge = Number(numPizzas) * 2;

 }

This statement checks the typePizza variable to see if the
Supreme was selected. If so, it will multiply the number of
 pizzas by two in order to get the number of dollars to add to
the price.

6. Save your work by clicking Update, and then try it out!

If you select the Supreme pizza, you should now see that the
total will be equal to $12 times the number of pizzas your
ordered, as shown in Figure 14-3.

Delivering to other cities
The pizzeria has to grow! But the population of Anytown can only
eat so many pizzas, so management has decided to start delivery
service to other, carefully chosen, cities.

Figure 14-2: The new option has been added.

244 Part V: Freedom of Choice

There’s a catch, though! It’s not profitable to deliver just a single
pizza or to deliver to Beverly Hills for free. We’ll need to charge $5
for delivery of orders less than or equal to $10 and for out‐of‐town
delivery.

Follow these steps to put the new rules into place!

1. In the HTML pane, locate the drop‐down menu for the
 delivery city.

It currently only has one option, Anytown.

2. Add at least two more options to the drop‐down.

When it’s finished, it should look like this:

<label>Where do you live?

 <select id="deliveryCity">

 <option value="Anytown">Anytown</option>

 <option value="Sacramento">Sacramento</option>

 <option value="Your Town">Your Town</option>

 </select>

</label>

You can replace Your Town with anything you like.

Figure 14-3: The new pie has been added!

245 Chapter 14: Making Decisions with the If...Else Statement

3. Click Update to save your work and see your changes in the
Result pane.

4. In the JavaScript pane, find the calculateDelivery()
function.

It currently just sets everyone’s deliveryPrice to 0.

5. Under the comment that reads calculate delivery
price, if there is one, insert the following if...else
statement.

if ((deliveryCity === "Anytown") && (orderPrice > 10))

 {

 deliveryPrice = 0;

 } else {

 deliveryPrice = 5;

 }

6. Save your work by clicking the Update button, and try out the
form in the Result pane.

If you select a city other than Anytown, or your order price is
$10, a delivery fee of $5 will now be added to the total.

Displaying the delivery fee
Next, we need to display the delivery fee above the total, so that
people know what they’re getting into.

To display the delivery fee, follow these steps:

1. In the placeOrder() function, find the comment that reads
todo: output the delivery price, if there is one.

2. Below that comment, type the following if...else
statements:

if (deliveryPrice === 0) {

 theOutput += "<p>You get free delivery!</p>";

} else {

 theOutput += "<p>Your delivery cost is: $" + deliveryPrice;

}

246 Part V: Freedom of Choice

This if...else prints out a free delivery message if the
deliveryPrice is 0. Otherwise, it prints out the delivery
charge.

3. Click Update to save your changes. Then try out the form in
the Result pane.

The new free delivery message is shown in Figure 14-4.

Programming the birthday special
The final change that we’ll make to the program is to give people
free delivery on their birthdays.

To program this change, follow these steps:

1. In the HTML pane, add the birthday question to the form by
typing this markup after the delivery city question:

<label>Is it your birthday?

 <select id="birthday">

 <option value="yes">Yes</option>

Figure 14-4: Telling the customer that they get free
delivery is great for marketing!

247 Chapter 14: Making Decisions with the If...Else Statement

 <option value="no">No</option>

 </select>

</label>

2. Click Update to save your work and to see your changes in the
Result pane.

If your Result pane doesn’t look like Figure 14-5, check your
code carefully. You may also need to insert
 tags in
order to put in the right amount of spacing between questions.

3. Add the following to the placeOrder() function, below the
other getElementById statements to get the value of the
birthday form field:

var birthday = document.getElementById("birthday").value;

4. Add a third parameter to the calculateDelivery function
definition for the birthday variable.

function calculateDelivery(orderPrice, deliveryCity, birthday)

Figure 14-5: The Result pane with the new birthday
question.

248 Part V: Freedom of Choice

5. Add an or operator and a new expression to the if...else
statement in the calculateDelivery function to test
whether the value of birthday is yes.

if (((deliveryCity === "Anytown") && (orderPrice > 10)) ||

(birthday === "yes")) {

6. Modify the statement in the placeOrder() function that calls
calculateDelivery, to pass birthday as an argument:

var deliveryPrice = calculateDelivery(orderPrice, deliveryCity,

birthday);

7. Click Update to save your work.

Listing 14-5 shows the completed JavaScript code for the
JavaScript Pizzeria program.

Listing 14-5 The Completed JavaScript Pizzeria Program

// listen for button clicks

document.getElementById("placeOrder").addEventListener

("click", placeOrder);

/**

 * gets form values

 * calculates prices

 * produces output

 */

function placeOrder() {

 // get form values

 var numPizzas =

document.getElementById("numPizzas").value;

 var typePizza =

document.getElementById("typePizza").value;

 var deliveryCity =

document.getElementById("deliveryCity").value;

 var birthday =

document.getElementById("birthday").value;

 // get the pizza price

 var orderPrice = calculatePrice(numPizzas, typePizza);

249 Chapter 14: Making Decisions with the If...Else Statement

 // get the delivery price

 var deliveryPrice = calculateDelivery(orderPrice,

deliveryCity, birthday);

 // create the output

 var theOutput = "<p>Thank you for your order.</p>";

 // output the delivery price, if there is one

 if (deliveryPrice === 0) {

 theOutput += "<p>You get free delivery!</p>";

 } else {

 theOutput += "<p>Your delivery cost is: $" +

deliveryPrice;

 }

 theOutput += "<p>Your total is: $" + (orderPrice +

deliveryPrice);

 // display the output

 document.getElementById("displayTotal").innerHTML =

theOutput;

}

/**

 * calculates pizza price

 */

function calculatePrice(numPizzas, typePizza) {

 var orderPrice = Number(numPizzas) * 10;

 var extraCharge = 0;

 // calculate extraCharge, if there is one

 if (typePizza === "supreme") {

 extraCharge = Number(numPizzas) * 2;

 }

 orderPrice += extraCharge;

 return orderPrice;

}

/**

(continued)

250 Part V: Freedom of Choice

 * calculates delivery price

 */

function calculateDelivery(orderPrice, deliveryCity,

birthday) {

 var deliveryPrice = 0;

 // calculate delivery price, if there is one

 if (((deliveryCity === "Anytown") && (orderPrice >

10)) || (birthday === "yes")) {

 deliveryPrice = 0;

 } else {

 deliveryPrice = 5;

 }
 return deliveryPrice;

}

Listing 14-6 shows the completed HTML markup for the JavaScript
Pizzeria.

Listing 14-6 The Final HTML

<h1>JavaScript Pizzeria</h1>

<div id="orderForm">

 <label>How many pizzas do you want?

 <input type="number" id="numPizzas" />

 </label>

 <label>What kind of pizzas?

 <select id="typePizza">

 <option value="cheese">Cheese</option>

 <option value="pepperoni">Pepperoni</option>

 <option value="supreme">Supreme</option>

 </select>

 </label>

 <label>Where do you live?

 <select id="deliveryCity">

Listing 14-5 (continued)

251 Chapter 14: Making Decisions with the If...Else Statement

 <option value="Anytown">Anytown</option>

 <option value="Sacramento">Sacramento</option>

 <option value="Beverly Hills">Beverly

Hills</option>

 </select>

 </label>

 <label>Is it your birthday?

 <select id="birthday">

 <option value="yes">Yes</option>

 <option value="no">No</option>

 </select>

 </label>

 <button type="button" id="placeOrder">Place

Order</button>

</div>

<div id="displayTotal"></div>

Figure 14-6 shows the final program’s Result pane after placing
our lunch order today.

Figure 14-6: Our lunch order.

CHAPTER

15 Doing Different
Things with Switch

Switch statements are like highways with many
 different exits. The switch statement chooses among multiple
cases by evaluating an expression. These values are like the
exits. Each of these values in a switch statement is called
a case.

In this chapter, we use a switch statement to write a calendar
program that gives you suggestions for things to do, based on
what day of the week it is.

253 Chapter 15: Doing Different Things with Switch

Writing a Switch
The switch statement starts with the switch keyword, followed
by an expression in parentheses and then a series of different
options (called cases).

The syntax for the switch statement looks like this:

switch (expression) {

 case value1:

 //statements to execute

 break;

 case value2:

 //statements to execute

 break;

 case default:

 //statements to execute

 break;

}

You can have as many cases inside a switch statement as you’d
like. The switch statement will try to match the expression to
each case until it finds one that matches. Then it runs the state-
ments within that case until it gets to the break statement, which
causes it to exit the switch statement. Each case must end with a
break statement or semicolon (;). This tells the program to do
everything inside the case up until the break statement and then
stop.

A default case will run if no case matches the result of the
expression.

Let’s take a look at an example! The code in Listing 15-1 asks the
user to enter his favorite day of the week. The program then uses
a switch statement to produce a different output based on
 possible values that the user might enter. If the user enters any-
thing other than a day of the week, the default switch statement
will run.

254 Part V: Freedom of Choice

Listing 15-1 Produce Different Results for Different Input

var myNumber = prompt("Enter your favorite day of the

week!");

var theResponse;

switch (myNumber) {

 case "Monday":

 theResponse = "Ack!";

 break;

 case "Tuesday":

 theResponse = "Taco day!";

 break;

 case "Wednesday":

 theResponse = "Halfway there!";

 break;

 case "Thursday":

 theResponse = "It’s the new Friday!";

 break;

 case "Friday":

 theResponse = "TGIF! Yeah!";

 break;

 case "Saturday":

 theResponse = "What a day!";

 break;

 case "Sunday":

 theResponse = "Sunday = Funday!";

 break;

 default:

 theResponse = "I haven’t heard of that one!";

 break;

}

alert (theResponse);

Follow these steps to try out this program in JSFiddle:

1. Open JSFiddle and create a new blank project by clicking the
JSFiddle logo in the upper left.

255 Chapter 15: Doing Different Things with Switch

2. Type the code from Listing 15-1 into the JavaScript pane.

3. Click the Run link in the top menu.

A JavaScript prompt appears, asking you to enter your favorite
day of the week.

4. Enter a day of the week and click OK.

The switch statement runs. You should see a result based on
the value that you entered, as shown in Figure 15-1.

Building the Activity‐of‐the‐Day Calendar
If you’re like most people, you sometimes wake up thinking, “What
day is it?” The next thing you may think is, “Of all the great things
that I could be doing today, what is the one thing that I’m going to
do first?” Here’s where most people’s days go wrong. They start
off on the wrong foot, or get up on the wrong side of the bed, or
set off on the wrong track.

Don’t you wish you had a web page or mobile app that would tell
you what day it is and exactly one thing that you should do on
that day. Well, wish no more, because you’re about to build it! If
you use this program first thing in the morning, your odds of hit-
ting the ground running and having a real whiz‐bang kind of a day
will be 110 percent greater! Guaranteed!

Figure 15-1: Determining a response by evaluating different cases.

256 Part V: Freedom of Choice

Using the Activity Calendar program
Before we start building it, let’s check out the finished Activity
Calendar and see what it does. Follow these steps to run it:

1. Visit our public dashboard at http://jsfiddle.net/user/
forkids/fiddles.

2. Find the program named “Chapter 15 – Activity of the Day”
and click its title to open it.

You see the standard JSFiddle editor with the date and time
and a button in the Result pane, as shown in Figure 15-2.

3. Click the button labeled “What should I do today?”

A message appears below the button, telling you what you
should do, as shown in Figure 15-3. The message is different
for every day of the week.

Forking the Activity Calendar program
To get started with the Activity Calendar, follow these steps:

1. Go to our JSFiddle public dashboard at http://jsfiddle.
net/user/forkids/fiddles and locate the program named
“Chapter 15 – Activity of the Day – Start.”

2. Click the title of the program to open it in the editor.

Figure 15-2: The Activity Calendar program.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

257 Chapter 15: Doing Different Things with Switch

3. Open the Fiddle Options in the left toolbar and change the
name of the program to Your Name’s Activity Calendar
 (replacing Your Name with — you guessed it! — your name).

4. Click Update and Set as Base to save your work.

5. Test out the program by pressing the button in the Result
pane.

Nothing happens because the JavaScript hasn’t been
 completed yet.

Before we show you how to complete the Activity Calendar, let’s
talk about an important built‐in JavaScript object that we use in
this chapter, the Date object.

Using the Date object
The JavaScript Date object represents a single moment in time
within a JavaScript program. To create an instance of the Date

Figure 15-3: The activity of the day.

258 Part V: Freedom of Choice

object, use the new keyword and assign the result to a variable
name, like this:

var myDate = new Date();

Creating a new Date object in this way will assign the current
date to the variable.

To test this out, follow these steps:

1. Open the JavaScript Console in Google Chrome.

2. Type the following into the console, and then press Return
(Mac) or Enter (Windows).

var myDate = new Date();

The console prints out undefined to acknowledge that the
command has been run.

3. Type the following, and then press Return or Enter.

myDate

The console prints out the exact date and time that your Date
object was created.

Like other JavaScript objects we talk about in this book, the Date
object has a bunch of built‐in functions (also known as methods)
that you can use to do different things with the Date object.

Table 15-1 lists the methods that can be used to get information
from the Date object. When you use a method to get information
from an object, it’s called a getter method.

Table 15-1 Getter Methods of the Date Object
Method What It Does

getDate() Gets the day of the month (1–31).

getDay() Gets the day of the week as a number (0–6).

getFullYear() Gets the year (yyyy).

259 Chapter 15: Doing Different Things with Switch

To use the getter methods of the Date object, attach them to an
instance of the object using a period (or dot).

For example, after you’ve created a variable to hold a Date object
in the Chrome Developer Console, follow these steps to use some
of the getter methods.

1. Get the day of the week, as a number, with this statement:

myDate.getDay()

The JavaScript Console responds with a number from 0 to 6,
where 0 is equal to Sunday and 6 is equal to Saturday.

2. Get the day of the month, as a number, with this statement:

myDate.getDate();

3. Get the month of the year, as a number, with this statement:

myDate.getMonth();

Notice that both getMonth and getDay start with 0. In
JavaScript, the number for January is 0.

The numbers for both getDate and getFullYear, on the
other hand, are returned how you would expect them. The
second day of May is returned as the number 2, and the year
2020 is returned as 2020.

Method What It Does

getHours() Gets the hour (0–23).

getMilliseconds() Gets the fraction of a second (0–999).

getMonth() Gets the month (0–11).

getSeconds() Gets the seconds (0–59).

getTime() Gets the time, in Unix time (milliseconds since
January 1, 1970).

260 Part V: Freedom of Choice

In addition to being able to get values from Date objects,
JavaScript also allows you to set values. Table 15-2 lists the
 methods that can be used to set information in a Date object.
When you use a method to set information in an object, it’s called
a setter method.

To try using some of the setter methods in the JavaScript Console,
follow these steps:

1. Create a new Date object using this statement:

var myNewDate = new Date();

2. Find out the initial value of the Date object by typing its name
into the console:

myNewDate

The console prints out the current value of the myNewDate
object as a string.

3. Change the month to August using this statement:

 myNewDate.setMonth(7);

Table 15-2 Setter Methods of the Date Object

Method What It Does

setDate() Sets the day of the month (1–31).

setDay() Sets the day of the week as a number (0–6).

setFullYear() Sets the year (yyyy).

setHours() Sets the hour (0–23).

setMilliseconds() Sets the fraction of a second (0–999).

setMonth() Sets the month (0–11).

setSeconds() Sets the seconds (0–59).

setTime() Sets the time, in Unix time (milliseconds since
January 1, 1970).

261 Chapter 15: Doing Different Things with Switch

The console returns a giant number. This number is the new
value of the myNewDate object in Unix time. Unix time is how
JavaScript stores dates internally. It’s equal to the number of
milliseconds (thousandths of a second) since January 1, 1970.

4. Type the name of the object to see the new date as a human‐
readable string.

myNewDate

Now that you understand how to use the Date object, let’s combine
it with a switch statement to build the Activity Calendar program.

Building the Activity Calendar program
When you first load the starting point program for this chapter,
the JavaScript pane contains the starting code and the comments
that describe what the program will do. Listing 15-2 shows what
our starting point code should look like.

Listing 15-2 The Starting JavaScript for the Activity Calendar

var todayDate = document.getElementById("todaysdate");

var todoButton = document.getElementById("whattodo");

// add a listener to the whattodo button

todoButton.addEventListener("click", displayActivity);

// create a new Date object

var d = new Date();

// call the displayDate() function

displayDate();

function displayDate() {

 // todo: display the current date in the todaysdate

div

}

function displayActivity() {

 // todo: find out the day of the week

(continued)

262 Part V: Freedom of Choice

 /* todo: set a variable, called youShould, with a

different string based on what day of the

week it is. */

 // todo: output the value of youShould into the

thingToDo div

}

Let’s go over what the program does so far. Try following along in
the code and pick out which statements do each of the following
items:

 ✓ Define two new variables to hold references to HTML elements
we’ll be working with in the program.

 ✓ Create an event listener to handle clicks on the button.

 ✓ Create an instance of the Date object to hold the current date.

 ✓ Call a function that will display the current date.

After these things have been done, the program just sits and waits
for someone to click the What To Do button. When it detects a
click of the button, it runs the function associated with the event
listener, displayActivity().

Your job is to finish the two functions in this program.

Before moving on to the step‐by‐step instructions, can you figure
out how to do them yourself? Give it a try and when you’re ready,
move on and we’ll walk you through how it works!

1. Find the displayDate() function and add this statement just
below the comment:

todayDate.innerHTML = d;

This statement sets the innerHTML property of the div
 element referenced by the todayDate variable to the value
of d (which we created as a Date object).

Listing 15-2 (continued)

263 Chapter 15: Doing Different Things with Switch

2. Click Update to see the date displayed in the Result pane.

3. To make the date displayed in the Result pane easier to read,
change it to the following:

todayDate.innerHTML = d.toDateString();

Now when you run it, it will display a shorter date, with just
the day of the week, the month, the date, and the year.

4. Find the function called displayActivity() and add a state-
ment inside of it to get the current day of the week from the d
variable.

var dayOfWeek = d.getDay();

5. Initialize a variable to hold the string that will contain the mes-
sage for each day.

var youShould;

6. Write the condition part of a switch statement that will evalu-
ate the value of the dayOfWeek variable, followed by an open-
ing curly bracket:

switch (dayOfWeek) {

7. Write the first case, which will be for the value 0, or Sunday:

case 0:

8. Write a statement to set the value of youShould when it’s
Sunday, for example:

youShould = "Take it easy. You’ve earned it!";

9. Write a break statement to end the switch statement when
this case is true.

break;

10. Write a case for each of the other days of the week.

264 Part V: Freedom of Choice

11. After you’ve done the case for day 6, write a default case that
should run in the (very remote) chance that the day of the
week is something other than a number from 0 to 6.

default:

 youShould = "Hmm. Something has gone wrong.";

 break;

12. Finish the switch statement with a closed curly bracket on a
line by itself.

}

13. Under the switch statement, write a statement to output the
youShould string into the div with an ID of thingToDo.

document.getElementById("thingToDo").innerHTML = youShould

When all the statements are written, the JavaScript pane should
look like Listing 15-3.

Listing 15-3 The Finished Program

var todayDate = document.getElementById("todaysdate");

var todoButton = document.getElementById("whattodo");

// add a listener to the whattodo button

todoButton.addEventListener("click", displayActivity);

// create a new Date object

var d = new Date();

// call the displayDate() function

displayDate();

function displayDate() {

 todayDate.innerHTML = d.toDateString();

}

function displayActivity() {

 // find out the day of the week

 var dayOfWeek = d.getDay();

265 Chapter 15: Doing Different Things with Switch

 /* set a variable, called youShould, with a different

string based on what day of the week it is */

 var youShould;

 switch (dayOfWeek) {

 case 0:

 youShould = "Take it easy. You’ve earned it.";

 break;

 case 1:

 youShould = "Gotta do what ya gotta do!";

 break;

 case 2:

 youShould = "Take time to smell the roses!";

 break;

 case 3:

 youShould = "Don’t forget to eat breakfast!";

 break;

 case 4:

 youShould = "Learn something new today!";

 break;

 case 5:

 youShould = "Make a list of things you like to do.";

 break;

 case 6:

 youShould = "Do one thing from your list of things

you like to do.";

 break;

 default:

 youShould = "Hmm. Something has gone wrong.";

 break;

 }

 // output the value of youShould into the thingToDo div

 document.getElementById("thingToDo").innerHTML =

youShould;

}

266 Part V: Freedom of Choice

When it’s done, try running it and pressing the button. The output
in the Result pane should look like Figure 15-4.

Now that you have your basic Activity Calendar, here are some
ideas for making it even more awesome:

 ✓ Write your own activities, if you haven’t already!

 ✓ Make it have a different activity for every day of the month
instead of every day of the week.

 ✓ Have multiple messages — one for the day of the week, one for
the day of the month, one for the month, and one for the year.

 ✓ Write CSS styles to customize the look of your Activity
Calendar.

Can you think of other ideas for improving the Activity Calendar?

Figure 15-4: The output of the Activity Calendar
program.

CHAPTER

16Choose Your Own
Adventure

Imagine you’re climbing a tree. If you climb up one
branch, you’ll see certain things, such as a bird’s nest or a
 balloon that got stuck up there during your birthday party. If
you climb a different branch, you might see other things, like
the neighbor’s garage. In JavaScript, the technique of using
if...else or switch statements to choose between two or
more paths is called branching.

In this chapter, we use branching to write a choose‐your‐own‐
adventure game that asks for user input at key moments to
change the story.

268 Part V: Freedom of Choice

Planning the Story
Any good story needs a plot. The plot is the outline of events that
happen over the course of the story. When writing a story where
the user’s input influences the plot, the writer needs to pay close
attention to managing the different plot lines. Each plot line has
the same beginning, but the middle and ending are different based
on input from the user.

Creating a flow chart
Considering all of the different options — and planning for each
possibility — in a branching program is a valuable skill to have as
a programmer.

We’ll begin by creating a simple story that poses a question. This
creates two branches. Each of these branches will have a question
that creates two more branches. Eventually, every choice will lead
back to one of two possible endings.

A useful tool for visualizing branches of a story or of a program is a
flowchart. Figure 16-1 shows a flow chart for our interactive story.

The next step in developing our story and program is to fill in the
plot with some details.

Figure 16-1: A flow chart showing the basic outline of the story.

269 Chapter 16: Choose Your Own Adventure

Writing the story
Our story takes place on a spaceship in the not‐too‐distant future.
You’re the captain of the ship, and your mission is to fly to Mars
to pick up an old robot that has stopped functioning so that it, and
its valuable experiments, can be returned to Earth and studied.

The launch of the ship goes perfectly, but one week into the 260‐
day voyage, you discover that your cat has stowed away on your
ship. Unless something changes, you might not have enough food
for the both of you. You need to decide whether to turn your ship
around, or keep going for Mars and hope for the best.

If you turn the ship around, the mission ends with the cat being
returned to Earth and your boss yelling at you because you don’t
have the Mars robot.

If you continue toward Mars, you get very nervous about your
food situation, but you feed the cat half of your meals each day,
because you’re a good person. You reach Mars and discover that
the last person to visit the Mars robot left a large cooler full of
delicious sandwiches. You pack them into the spaceship along
with the robot and head home, where you’re greeted as a hero.

Playing the Game
The most fun part about a game like this one, in which your
choices decide how the story unfolds, is in exploring all the differ-
ent possibilities. Interactive stories tend to be short, because
reading and writing each of the different possibilities takes much
more effort and time than writing or reading a story with just a
single storyline.

To see how the Martian Rescue! game works, follow these steps:

1. Go to our public dashboard in JSFiddle, at http://
jsfiddle.net/user/forkids/fiddles.

You see a list of all the projects that we’ve created for this book.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

270 Part V: Freedom of Choice

2. Open the “Chapter 16 – Martian Rescue!” project by clicking its
title in the public dashboard.

The project opens, as shown in Figure 16-2, and the Result
pane asks you to answer the first question.

3. Enter your answer to the first question into the input field, and
click the Go button.

Depending on how you respond, new text displays in the
Result pane and you’re asked another question.

4. Respond to the new question.

Once again, the program will respond to your question by con-
tinuing the story.

Figure 16-2: The Martian Rescue! program.

271 Chapter 16: Choose Your Own Adventure

5. Answer questions and view the results until the game ends.

6. Click Run in the JSFiddle top menu to start the program over.

The text from the first time you ran the program will be
removed from the Result pane and you see the first question
again.

7. Play the game again, but answer questions differently this time
in order to see the alternate messages and story ending.

Now that you’ve seen how the game works, move on to the next
section, where we show you how to program it, and how you can
customize it with your own stories!

Forking the Code
We’ve created a starting point for the program, with all the HTML
and CSS necessary, but only part of the JavaScript written. Follow
these steps to make a copy of the starter program in your own
JSFiddle account.

1. Log into JSFiddle if you aren’t already logged in.

2. Go to our JSFiddle Public Dashboard at http://jsfiddle.
net/user/forkids/fiddles and find the “Chapter 16 –
Martian Rescue – Start” project.

3. Open the starter project by clicking the title.

4. Click the Fork link in the top menu to save a copy in your own
JSFiddle account.

5. Change the name of the project to “(Your Name)’s Martian
Rescue.”

6. Click Update and Set as Base in the top menu to save
your work.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

272 Part V: Freedom of Choice

Tiptoeing through the HTML and CSS
The HTML and CSS for Martian Rescue! are finished in the starter
program. Let’s take a look at them now before we move on to fin-
ishing the JavaScript. We’ll start with the HTML pane.

The HTML is made up of two parts, separated by an HTML com-
ment. The first part of the HTML creates the top section, where
the story will be displayed, and the bottom section, where ques-
tions and answers will be displayed.

Listing 16-1 shows this top section of the HTML.

Everything that you see in the Result pane when the program first
starts is the result of these lines of HTML, combined with the CSS.

Figure 16-3 shows the Result pane for the Martian Rescue! project
before the JavaScript has been completed.

Notice that there are three differently colored sections:

 ✓ The top, dark gray part where the story will display

 ✓ The light gray part, where the question will display

 ✓ The white part, where the form and user input area will
display

Listing 16-1 The Beginning of the HTML

<div id="story"></div>

<div id="siteFooter">

 <div id="question"></div>

 <div id="answer">Enter your answer:

 <input type="text" id="yourAnswer" />

 <button type="button" id="submit">Go!</button>

 </div>

</div>

273 Chapter 16: Choose Your Own Adventure

If you look at the HTML and compare it with the Result pane, how-
ever, you’ll notice that something’s not right. The HTML clearly
contains an input field and button, but those aren’t displaying in
the Result pane. Why?

Turning off elements with display:none
Because we only want to show the input field and button when
we’re asking a question, we’ve hidden the user input field and
 button using CSS.

Listing 16-2 shows the complete CSS for Martian Rescue!

Figure 16-3: The initial Result pane.

Listing 16-2 The CSS for Martian Rescue!

* {

 margin: 0px;

}

html, body {

 font‐family: Arial, sans‐serif;

 height: 100%;

 overflow:hidden;

}
(continued)

274 Part V: Freedom of Choice

Listing 16-2 (continued)
#story {

 width: 100%;

 color: yellow;

 height: 80%;

 background‐color: #333;

 overflow‐y:scroll;

}

#site‐footer, .story:after {

 position:static;

 bottom: 0;

 height: 20%;

}

#question {

 padding: 10px 0;

 width: 100%;

 background‐color: #CCC;

 color: #333;

}

#answer {

 padding: 10px 0;

 width: 100%;

 background‐color: #333;

 color: #FFF;

 text‐align: center;

 display: none;

}

.storyPart {

 display: none;

}

p {

 margin‐top: 1em;

}

If you look again at the HTML, you’ll see that the input field and
the button are inside of a div element with an ID of answer.

To see the styles applied to this div element, find the style rules
with the ID selector of answer in the CSS pane.

275 Chapter 16: Choose Your Own Adventure

The first five properties in this style rule set the background color,
the text color, the padding, and the text alignment of the element.
The last one, however, sets the display property, like this:

display: none;

When display is set to none, it turns off the display of the
 element — in other words, the element just doesn’t display.

Often, programmers will use display: none in order to hide ele-
ments that they want to hide or show using JavaScript. When you
want to display an element that’s been hidden with CSS you can
use JavaScript to change the value of the display property to any
of its visible values, like this:

document.getElementById("answer").style.display = "block";

Looking at (or not looking at) the story parts
Underneath the basic HTML that creates the three sections of the
Martian Rescue! program, you’ll see several more div elements.
Each of these contains text that may become part of the story,
based on the choices that you make within the program.

Listing 16-3 shows the first one of these div elements.

Listing 16-3 The First storyPart div

<div class="storyPart" id="answer01">

 <p>You are the captain of a spaceship named "The

Flying Hippo." One day, you’re working on

tuning up your ship’s engines when you get an

urgent message on your space phone:</p>

 <p>"Captain, one of our Mars robots is sick. We need

you to go to Mars immediately and retrieve it

so that we can fix it and download the results

of its important experiments."</p>
(continued)

276 Part V: Freedom of Choice

Listing 16-3 (continued)
 <p>You remember that you’re supposed to go to a meeting

of the Space Scouts tonight, and you were

really looking forward to it. But, on the other

hand, the other Space Scouts would understand

that this mission is very important.</p>

 <p>What do you do? Go to Mars, or stay home?</p>

</div>

Each of the parts of the story has a class attribute set to
storyPart and a unique ID attribute.

The same class attribute value can be applied to multiple ele-
ments in an HTML document, but each ID attribute must be
unique.

Can you guess why none of the div elements with class attribute
values of storyPart are displaying in the Result pane when you
open the program? If you guessed that it’s because their CSS dis-
play properties are set to none, you’re right!

Take a look at the CSS pane. Find the .storyPart selector and
notice that it has only one style rule inside of it: display:
none;.

By setting the display property to none for every element with
the storyPart class, we’ve hidden them all. Then, when the time
comes, we can display the correct part of the story using JavaScript.

That just about covers everything that you need to understand
about the CSS and HTML. Now let’s talk about the JavaScript.

Writing the Martian Rescue! JavaScript
When you first open the starter program for Martian Rescue!, the
JavaScript pane contains the code shown in Listing 16-4.

Let’s step through this skeletal code and finish it up!

277 Chapter 16: Choose Your Own Adventure

Listing 16-4 The Starter JavaScript for Martian Rescue!

// declare variables

var story = document.getElementById("story");

var siteFooter = document.getElementById("siteFooter");

var question = document.getElementById("question");

var answer = document.getElementById("answer");

var yourAnswer = document.getElementById("yourAnswer");

var submit = document.getElementById("submit");

// todo: make an empty array called answers

/* todo: listen for clicks on the submit button and call

the getAnswer() function when they happen. */

// todo: call the function to ask the first question

/* askQuestion() asks a question, based on the number

passed to it */

function askQuestion(questionNumber) {

}

/* getAnswer() gets the answer from the text field and

pushes it into the answers array, then calls

the continueStory function */

function getAnswer() {

}

/* continueStory() displays part of the story or an error

based on the value of an item in the answers

array */

function continueStory(answerNumber) {

}

/* theEnd() ends the story and hides the input field */

function theEnd() {

}

278 Part V: Freedom of Choice

Creating element shortcuts
The first section of the code defines some global variables that we
need to use throughout the rest of the program. The ones that are
already finished for you are variables that create references to
HTML elements. You’ll use these variables as shortcuts to save
you from having to type document.getElementById over and over
again in the program.

When you use the following statement, it makes it possible for you
to use myElement in place of document.getElementById
("myElement"):

var myElement = document.getElementById("myElement");

This can make your code much easier to type, and must easier to
read later on, too.

Creating an empty array
After the element shortcuts is a comment telling you to create an
empty array.

Recall from Chapter 11 that the way to create an empty array (one
with no values stored in it) is to set the value of a variable to
square brackets with nothing between them. To create an empty
array called answers, type the following code on the next line
after the comment telling you to create it.

var answers = [];

Now you have an array with no elements. Because you created
this array outside of all the functions in your program, this array
will be usable anywhere in the program.

A variable that can be used anywhere inside a program is called a
global variable.

279 Chapter 16: Choose Your Own Adventure

Creating an event listener
The next to‐do item in the JavaScript pane says to listen for clicks
on the submit button. The word listen is a clue for how to write
this code. Can you guess what JavaScript method we’ll use to lis-
ten for clicks? If you guessed that we’ll use addEventListener,
that’s correct!

To write the event handler, follow these steps:

1. Under the comment telling you to listen for clicks on the
 submit button, first type the shortcut to the submit button,
 followed by a period:

submit.

2. Right after the period, type the addEventListener keyword,
followed by parentheses.

submit.addEventListener()

3. Inside the parentheses after addEventListener(), pass the
two arguments: the event you want to listen for and the
 function that will be called when the event happens.

submit.addEventListener("click",getAnswer);

Great! Now you have the array that will be used to store the user’s
responses, and you have an event handler set up for the button.
But, if you run the program now, you’ll see that it doesn’t appear
to do anything that it couldn’t do before. It just shows the same
three blank sections in the Result pane.

In order to make this program do something useful, we need to
kick off some sort of action. In the Martian Rescue! program, we
start the action with a call to the askQuestion() function, as
indicated in the next to‐do item in the JavaScript pane.

280 Part V: Freedom of Choice

Calling the askQuestion() function
The askQuestion() function takes a single parameter, the
questionNumber. The questionNumber is the number of the
question to ask the user. We’ll call the first question question #0.

To call the function and ask the first question, type this after the
comment asking you to:

askQuestion(0);

As you complete to‐do items, it’s helpful to remove the word todo
so that you know that the item is done.

Congratulations, you’ve now completed the parts of the program
that aren’t inside of functions. The beginning of your JavaScript
should now look like Listing 16-5.

If you run the program now, you’ll see that it still doesn’t do
 anything in the Result window.

Listing 16-5 The Beginning of the JavaScript

// declare variables

var story = document.getElementById("story");

var siteFooter = document.getElementById("siteFooter");

var question = document.getElementById("question");

var answer = document.getElementById("answer");

var yourAnswer = document.getElementById("yourAnswer");

var submit = document.getElementById("submit");

var answers = [];

/* listen for clicks on the submit button and call the

 getAnswer() function when they happen */

submit.addEventListener("click", getAnswer);

// call the function to ask the first question

askQuestion(0);

281 Chapter 16: Choose Your Own Adventure

To make the program actually do something, we need to finish the
functions.

Writing the functions
The first function that we’ll work on is the one that prompts users
to answer questions, the askQuestion() function.

To complete the askQuestion() function, follow these steps.

1. Change the value of the display property of the answer div so
that the input field and button appear, using this code:

answer.style.display = "block";

This statement causes the form to show up in the Result pane.

2. Change the length of the answers array to match the number
of the question being asked, using this code:

answers.length = questionNumber;

This statement uses the argument passed to the function to
set the length property of the answers array. We do this so
that answers are always stored within their question in the
array. In the event that a user enters an invalid value, such as
“Maybe,” when a question asks for a “Yes” or a “No,” setting
the length of an array to the number of the question will cause
the invalid values to be overridden when the question is asked
again.

When you set the length property of an array to a number
that’s less than the actual length of the array, elements after
the new length will be deleted.

3. Write a switch statement that will use the argument passed
into the function to determine which question to answer.

282 Part V: Freedom of Choice

Here’s the code for the switch statement:

switch (questionNumber) {

 case 0:

 question.innerHTML = "Are you ready to play?";

 break;

 case 1:

 question.innerHTML = "Go to Mars, or stay home?";

 break;

 case 2:

 question.innerHTML = "Risk it, or go home.";

 break;

 default:

 break;

 }

It’s not technically necessary to use a break statement after
the default clause of a switch statement, since the switch will
exit after the default clause anyway. It’s also not necessary to
specify a default clause at all if it doesn’t do anything, as in
this case. But we think it’s still a good idea to do both of these
things for consistency.

4. After the switch statement, end the function with a closing
curly brace, like this:

}

5. Save your work by clicking the Update link.

The finished askQuestion() function is shown in
Listing 16-6.

Listing 16-6 The Finished askQuestion() Function

/* askQuestion() asks a question, based on the number

passed to it. */

function askQuestion(questionNumber) {

 answer.style.display = "block";

 //make sure the array is the right length

 answers.length = questionNumber;

283 Chapter 16: Choose Your Own Adventure

With the askQuestion() function finishes, the Result pane now
does something. You’ll see that the first question displays, and
the input field and button display beneath it, as shown in
Figure 16-4.

At this point, however, you can put any value into the input field
and press the Go button and nothing will happen. In order to
make the game work, we need to write the next two functions.

Follow these steps to write the getAnswer() function.

1. Get the value from the input field and convert it to uppercase
letters with this statement:

cleanInput = yourAnswer.value.toUpperCase();

 switch (questionNumber) {

 case 0:

 question.innerHTML = "Are you ready to play?";

 break;

 case 1:

 question.innerHTML = "Go to Mars, or stay

home?";

 break;

 case 2:

 question.innerHTML = "Risk it, or go home.";

 break;

 default:

 break;

 }

}

Figure 16-4: The first question displays.

284 Part V: Freedom of Choice

2. Use the push array method to add the user’s answer as a new
element at the end of the answers array, like this:

answers.push(cleanInput);

3. Reset the input field, clearing the current value out of it,
like this:

yourAnswer.value = "";

4. Call the continueStory() function, passing it the number of
the last element in the answers array, using this code:

continueStory(answers.length ‐ 1);

Because arrays start counting at 0, the length (number of ele-
ments in the array) will always be one more than the number
of the last element, which is why we subtract 1 from the length
above.

5. Finish the getAnswer() function with a closing curly bracket.

}

The finished getAnswer() function is shown in Listing 16-7.

Move on to the next section to write the continueStory()
function.

Listing 16-7 The Finished getAnswer() Function

/* getAnswer() gets the answer from the text field and

pushes it into the answers array, then calls

the continueStory function */

function getAnswer() {

 cleanInput = yourAnswer.value.toUpperCase();

 answers.push(cleanInput);

 yourAnswer.value = "";

 continueStory(answers.length ‐ 1);

}

285 Chapter 16: Choose Your Own Adventure

Writing continueStory()
The continueStory() function uses if...else statements to
determine whether the user entered a valid value and then to
show the correct part of the story based on that input.

Follow these steps to write continueStory():

1. Write a switch statement to use the value of the argument to
find out what question is being asked.

The basic switch statement, without the if...else
 statements for each question, looks like this:

switch (answerNumber) {

 case 0:

 //insert statements

 break;

 case 1:

 // insert statements

 break;

 case 2:

 // insert statements

 break;

 default:

 // insert statements

 break;

}

2. Write if...else statements for the first question in the
game: “Are you ready to play?”

When it’s finished, the first case in the switch statement
should look like this:

case 0:

if (answers[0] === "YES") {

 story.innerHTML = document.getElementById("answer01").

innerHTML;

 askQuestion(1);

286 Part V: Freedom of Choice

} else if (answers[0] === "NO") {

 story.innerHTML = document.getElementById("answer02").

innerHTML;

 askQuestion(0);

} else {

 story.innerHTML = document.getElementById("err0").innerHTML;

 askQuestion(0);

}

break;

Let’s step through this code line‐by‐line:

case 0:

This line says that if the user responded to the first question,
run the following statements.

if (answers[0] === "YES") {

This line is saying that if the first element in the array (which
corresponds to the first question) is set to "YES", run the fol-
lowing statements. Remember that in the getAnswer() func-
tion, we converted the user’s input to uppercase before
pushing it into the array. So, the user can enter yes, Yes, or
even yeS and this statement will still be true.

story.innerHTML = document.getElementById("answer01").

innerHTML;

This statement gets the HTML from inside the div element
with an ID of answer01 and overwrites the contents of the
div with the ID of story. If you locate the div with the ID
equal to answer01 in the HTML pane, you’ll see that it’s the
beginning of the story.

287 Chapter 16: Choose Your Own Adventure

When you answer “Yes” to the question “Are you ready to
play?,” the first part of the story will display.

 askQuestion(1);

This statement calls the askQuestion function and tells it to
ask question #1. This causes the askQuestion function to ask
“Go to Mars, or stay home?”

} else if (answers[0] === "NO") {

If the user didn’t answer “yes,” the else clause will run. But
here we put another if statement inside of the else clause so
that we can test for a value of "NO", but only if the answer
wasn’t "YES".

story.innerHTML = document.getElementById("answer02").innerHTML;

If the answer is "NO", set the story div’s innerHTML equal to
the appropriate message.

askQuestion(0);

Because they said they aren’t ready to play, ask them the first
question again until they are ready.

} else {

Do the following if the user didn’t enter Yes or No.

story.innerHTML = document.getElementById("err0").innerHTML;

Set the value of the story div to an error message, telling
them to enter either Yes or No.

askQuestion(0);

Ask the first question again, and hopefully they’ll provide a
good answer this time!

288 Part V: Freedom of Choice

3. Write the cases for the other two questions in the game,
like this:

case 1:

if (answers[1] === "GO TO MARS") {

 story.innerHTML = document.getElementById("answer11").

innerHTML;

 askQuestion(2);

} else if (answers[1] === "STAY HOME") {

 story.innerHTML = document.getElementById("answer12").

innerHTML;

 theEnd();

} else {

 story.innerHTML = document.getElementById("err1").innerHTML;

 askQuestion(1);

}

 break;

case 2:

 if (answers[2] === "RISK IT") {

 story.innerHTML = document.getElementById("answer21").

innerHTML;

 theEnd();

} else if (answers[2] === "GO HOME") {

 story.innerHTML = document.getElementById("answer22").

innerHTML;

 theEnd();

} else {

 story.innerHTML = document.getElementById("err2").innerHTML;

 askQuestion(2);

}

 break;

default:

 story.innerHTML = "The story is over!";

 break;

}

4. Finish the function with a closing curly bracket.

}

5. Save your work by clicking the Update link.

The completed continueStory() function is shown in
Listing 16-8.

289 Chapter 16: Choose Your Own Adventure

Listing 16-8 The continueStory() Function

/* continueStory() displays part of the story or an error

based on the value of an item in the answers

array. */

function continueStory(answerNumber) {

 switch (answerNumber) {

 case 0:

 if (answers[0] === "YES") {

 story.innerHTML = document.

getElementById("answer01").innerHTML;

 askQuestion(1);

 } else if (answers[0] === "NO") {

 story.innerHTML = document.

getElementById("answer02").innerHTML;

 askQuestion(0);

 } else {

 story.innerHTML = document.

getElementById("err0").innerHTML;

 askQuestion(0);

 }

 break;

 case 1:

 if (answers[1] === "GO TO MARS") {

 story.innerHTML = document.

getElementById("answer11").innerHTML;

 askQuestion(2);

 } else if (answers[1] === "STAY HOME") {

 story.innerHTML = document.

getElementById("answer12").innerHTML;

 theEnd();

 } else {

 story.innerHTML = document.

getElementById("err1").innerHTML;

 askQuestion(1);

 }

 break;
(continued)

290 Part V: Freedom of Choice

The final function we need to write is the function that runs when
the story comes to the end.

Writing theEnd()
The function called theEnd() prints out the final line of the story
and hides the contents of the answer div — including the ques-
tion as well as the input field and button. To write the theEnd()
function, follow these steps:

1. Type the following statement in the function body of
theEnd() to print out “The End” after the last text in the
story div:

story.innerHTML += "<p>The End.</p>";

Listing 16-8 (continued)
 case 2:

 if (answers[2] === "RISK IT") {

 story.innerHTML = document.

getElementById("answer21").innerHTML;

 theEnd();

 } else if (answers[2] === "GO HOME") {

 story.innerHTML = document.

getElementById("answer22").innerHTML;

 theEnd();

 } else {

 story.innerHTML = document.

getElementById("err2").innerHTML;

 askQuestion(2);

 }

 break;

 default:

 story.innerHTML = "The story is over!";

 break;

 }

}

291 Chapter 16: Choose Your Own Adventure

2. Erase the last question asked from the question div, using
this statement:

question.innerHTML = "";

3. Hide the input field and button with this statement:

answer.style.display = "none";

4. Click Update to save your work.

The final theEnd() function is shown in Listing 16-9.

That completes the Martian Rescue! program. Click Update and
Set as Base and then try it out!

If you did everything correctly, you should be able to play
through the game in any way that you want. Figure 16-5 shows the
Result pane of a game in progress.

Do you have ideas for other interactive stories? Can you think of
other ways to modify our story to make it longer, more exciting,
or funnier? Experiment with the program and share your work
with your friends or with us online! We’re looking forward to
 seeing what you come up with!

Listing 16-9 The theEnd() Function

/* theEnd() ends the story and hides the input field */

function theEnd() {

 story.innerHTML += "<p>The End.</p>";

 question.innerHTML = "";

 answer.style.display = "none";

}

292 Part V: Freedom of Choice

Figure 16-5: Playing Martian Rescue!

Part VIPart VI
Loops

In this part . . .

 What’s This Loop For? 295

 Using While Loops ... 309

 Building a Lemonade Stand 326

 For information on advanced looping with
JavaScript, go to www.dummies.com/extras/
javascriptforkids.

http://www.dummies.com/extras/javascriptforkids
http://www.dummies.com/extras/javascriptforkids

CHAPTER

17What’s This
Loop For?

for loops are useful for when you know in advance how
many times you need to do something. You can use a for loop
to count to 10, or to count to 1,000,000. It’s all the same to
JavaScript!

In this chapter, we look at one of the most popular types of
loops in JavaScript: the for loop. We use for loops to create
our own weather forecasting app.

296 Part VI: Loops

Introducing the for Loop
The for loop is the most commonly used type of loop in
JavaScript. Here’s a sample for loop that prints out the words
Hello, JavaScript! 500 times to the JavaScript console.

for (var counter = 0; counter < 500; counter++) {

 console.log(counter + ": Hello, JavaScript!");

}

Figure 17-1 shows what this code looks like when it’s run in the
JavaScript console.

This isn’t the most exciting use for a loop, but you can certainly
see that it’s easier to use a loop than it would be to type out 500
console.log statements!

Let’s take a closer look at how to write for loops.

The three parts of the for loop
The for loop is made up of three different statements:

 ✓ Initialization: The initialization statement declares a variable
that the loop will use to keep track of how long it has been
looping.

 ✓ Condition: A Boolean expression to be evaluated with each
iteration of the loop.

Figure 17-1: Saying “Hello, JavaScript!” 500 times.

297 Chapter 17: What’s This Loop For?

 ✓ Final expression: An expression to be evaluated after each
loop iteration.

Here’s how our Hello, JavaScript loop works:

1. A new variable — in this case, counter — is initiated with the
value of 0.

2. A test is done to check whether counter is less than 500.

If it is, then the statements inside the loop are run. In this
case, the console.log statement will print out Hello,
JavaScript!

3. The final expression increments (adds 1 to) the counter
variable.

4. The condition statement is evaluated again to determine
whether counter is still less than 500.

If so, the statements inside the loop are executed again.

5. The final expression increments the counter again.

6. Steps 2 and 3 keep running until the condition
(counter < 500) is no longer true.

Writing and using for loops
One very useful thing about for loops is that you can use the
counter inside the for loop to change the output of the statements
inside the loop.

The most basic example of this technique is to use the for loop
to count. Listing 17-1 shows an app that displays a countdown in
alert statements.

Listing 17-1 JavaScript Countdown

for (var i = 10; i > 0; i‐‐) {

 alert (i);

}

alert ("Blast Off!");

298 Part VI: Loops

Follow these steps to test out this program:

1. Go to http://jsfiddle.net and log in if you’re not already.

2. Open a new program by clicking the JSFiddle logo.

3. Type the code in Listing 17-1 into the JavaScript pane.

4. Click the Run button to run the program.

An alert box appears with the number 10 in it. When you click
OK in the alert box, a new alert with the number 9 in it
appears. The alerts appear like this until the value of the
 counter variable (i) is no longer greater than 0. At that point,
the loop will exit and a final alert will appear, containing the
phrase “Blast Off!”

Counting is a great use for for loops, but there’s an even better
and more useful thing that you can do with for loops: looping
through arrays.

Listing 17-2 shows a program that creates an array containing
names of people. The for loop outputs the same sentence with
each of the names inserted into it.

Listing 17-2 Outputting Array Values with for

var myFriends = ["Agatha", "Agnes", "Jermaine", "Jack"];

for (var i = 0; i < myFriends.length; i++){

 alert(myFriends[i] + " is my friend.");

}

To use a for loop to output all the values in an array, you just use
the length property of the array to find out how many elements
are in the array and you use that to perform the loop that same
number of times.

Then, inside the loop, you use the counter variable (i, in this
case) to output the corresponding array element.

299 Chapter 17: What’s This Loop For?

When you know how to output array elements, you can do all
sorts of cool things with for loops. For example, in the next
 section, we use a for loop to provide a randomized five‐day
weather forecast!

Random Weather Forecasting
Welcome to Anytown, USA! We have a saying here: “If you don’t
like the weather, wait five minutes!” And we mean it! It seems like
the weather here is completely random. One day it snows, the
next day it’s hot and humid. There’s really no predicting — which
is why we’ve hired you.

Your job as our new meteorologist is to come up with totally ran-
dom weather forecasts so that we can print them in the newspa-
per and talk about them on the TV.

Ready to get started? Okay, let’s forecast!

The first thing we need to do is understand how to get random
values in JavaScript. Move on to the next section to find out!

Using Math.random()
JavaScript has a built‐in function that’s used for creating random
numbers. This function is called Math.random().

Every time you run the Math.random() function, it creates a ran-
dom decimal number between 0 and 1. Using this random value,
you can do all sorts of things that are necessary for game pro-
gramming, including adding an element of surprise to the move-
ment of monsters or randomly selecting elements from arrays to
create crazy weather forecasts.

Listing 17-3 shows a simple program that pops up a random value
every time it’s run. Try running the program several times (in the
JavaScript console or in JSFiddle) to verify that you don’t get the
same value twice.

300 Part VI: Loops

Listing 17-3 A Random Number Alert

alert(Math.random());

Figure 17-2 shows the random number that we got when we ran
this statement in JSFiddle.

What programmers usually do with these long decimal numbers,
is to use operators and other functions to create the values or the
range of random values that they need.

If you want a random number between 0 and 10, you can multiply
the random number by 11, like this:

alert(Math.random() * 11);

If you want to remove the decimal numbers from the result, you
can use the Math.floor() function, like this:

alert(Math.floor(Math.random() * 11);

If you want a random number between 10 and 1,000, you can
 multiply the random value by the result of subtracting the small-
est number from the largest number and then adding the smaller
number to that result, like this:

alert(Math.floor(Math.random() * (1000 ‐ 100) + 100));

If you want to choose a random element from an array, it works
the same way as picking a random number from a range starting
with 0. Just multiply the random number by the length of the
array.

Figure 17-2: A random number.

301 Chapter 17: What’s This Loop For?

For example, Listing 17-4 creates an array called myFriends and
then uses Math.random() to choose one element from that array
and alert the value of it.

Listing 17-4 Finding a Random Friend

var myFriends = ["Agatha", "Agnes", "Jermaine", "Jack"];

var randomFriend = Math.floor(Math.random() *

myFriends.length);

alert(myFriends[randomFriend]);

When you run this program in JSFiddle, the result will be that
an alert with a random friend name will appear, as shown in
Figure 17-3.

Now that you understand how to get random data using
JavaScript, let’s move on to writing the app!

Writing the app
To write the random weather forecast, follow these steps.

1. Go to http://jsfiddle.net and log in if you’re not already
logged in.

2. Create a new program by clicking the JSFiddle icon.

3. Open the Fiddle Options panel on the left and enter a name for
your program, such as Random Weather.

4. Click Save in the top menu to save your work and publish it to
your Public Dashboard.

Figure 17-3: Choose a random friend.

302 Part VI: Loops

5. In the HTML pane, create a div element with an id of
5DayWeather, like this:

<div id="5DayWeather"></div>

6. In the JavaScript pane, start out by creating an array of the
days of the week:

var days = ["Monday","Tuesday","Wednesday","Thursday","Friday"];

7. Create a second array called weather.

The elements in this array should be different types of
weather. Feel free to put in as many different types of weather
as you can think of. Here’s our list:

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

8. Create two variables — minTemp and maxTemp — to hold the
minimum and maximum temperatures that you want the
 random weather program to output.

Here are our numbers (in degrees Fahrenheit):

minTemp = 0;

maxTemp = 100;

9. Start a new function, called generateWeather().

function generateWeather() {

10. The first line in the body of the function will start a for loop
that will loop through each of the days of the week.

for (var i = 0; i < days.length; i++) {

11. Declare a new variable, weatherToday, that will get a random
element from the weather array.

var weatherToday = weather[Math.floor(Math.random() * weather.

length)];

303 Chapter 17: What’s This Loop For?

12. Declare a new variable, tempToday, that will get a random
temperature between the values of your minTemp and
 maxTemp variables.

var tempToday = Math.floor(Math.random() * (maxTemp ‐ minTemp) +

minTemp);

13. Use innerHTML to output the values of weatherToday and
tempToday inside the div element by adding the following
code to the JavaScript pane.

document.getElementById("5DayWeather").innerHTML += "<div id='" +

days[i] + "' class='" + weatherToday +

"'>Forecast for " + days[i] + ":

" +

weatherToday + " and " + tempToday + " degrees.</

div>";

Notice that the above code adds the name of the day of the
week as an ID attribute and the type of weather as a class attri-
bute. We’ll use these later on to style the elements using CSS.

14. Close the loop and the function with closing curly brackets.

 }

}

15. Finally, insert a call to the generateWeather function after
the variable declarations and above the function.

generateWeather();

16. Click Update and then Set as Base in the top menu to save
your work.

The finished JavaScript code should look like Listing 17-5.

Listing 17-5 The Finished JavaScript Code

var days = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday"];

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

(continued)

304 Part VI: Loops

Listing 17-5 (continued)

var maxTemp = 100;

var minTemp = 0;

generateWeather();

function generateWeather() {

 for (var i = 0; i < days.length; i++) {

 var weatherToday = weather[Math.floor(Math.random() *

weather.length)];

 var tempToday = Math.floor(Math.random() * (maxTemp ‐

minTemp) + minTemp);

 document.getElementById("5DayWeather").innerHTML +=

 "<div id='" + days[i] + "' class='" +

weatherToday + "'>Forecast for " + days[i] +

":

" + weatherToday + " and " +

tempToday + " degrees.</div>";

 }

}

When you run this program (by clicking Run in the top menu of
JSFiddle) the result is the five weekdays followed by a weather
prediction for each, as shown in Figure 17-4.

Figure 17-4: The result of running Listing 17-5.

305 Chapter 17: What’s This Loop For?

Inspecting the results
Now we have a basic weather forecast, but it’s not very visually
appealing. Fortunately, we had the foresight to add id and class
attributes to each div in the output.

Follow these steps to inspect the output in the Result pane and
see the HTML elements and their attributes that have been added
by the JavaScript look:

1. Click Update or Run in the top menu bar in JSFiddle.

The Result pane updates with a new list of forecasts.

2. Choose Chrome ➪ More Tools ➪Developer Tools.

The Chrome Developer Tools open.

3. Click the Elements tab in the Chrome Developer tools.

The Elements panel, shown in Figure 17-5, appears.

Figure 17-5: The Elements panel in the Developer Tools.

306 Part VI: Loops

4. Click the Inspector tool (which looks like a magnifying glass)
in the upper left of the Elements panel.

5. Move your mouse over the Results pane.

Elements within the pane will become highlighted as your
mouse moves over them, as shown in Figure 17-6.

6. While your mouse is hovered over one of the days of the week
in the Result pane, click it.

The Elements panel updates to highlight the code that created
the element you clicked, as shown in Figure 17-7.

Figure 17-6: Highlighting elements in the Result pane.

Figure 17-7: The element you clicked is highlighted.

307 Chapter 17: What’s This Loop For?

7. Click some of the other elements in the Result pane and see
how the id attributes, classes, and content of each element
are different.

In the next section, we use the id and class attributes to apply
styles to the output of the program.

Styling the app
By selecting elements by their id and class attributes, we can
style each day, and customize the look of the days based on the
weather predicted for that day.

Follow these steps to apply some style to the app:

1. Create a rule in the CSS pane to style each of the days the
same using this code.

#Monday, #Tuesday, #Wednesday, #Thursday, #Friday {

 width: 18%;

 height: 200px;

 float: left;

 border: 1px solid black;

 padding: 2px;

 font‐family: sans‐serif;

 font‐size: 12px;

}

This rule creates a border, a width and height, a font family,
and some padding on each of the days of the week. We’ve also
set the float property equal to left in order to make all the
days be side‐by‐side rather than stacked.

2. Create a rule for several of the different types of weather using
this code:

.Sunny {

 background‐color: skyblue;

}

.Raining {

 background‐color: lightgrey;

}

308 Part VI: Loops

.Cloudy {

 background‐color: #eee;

}

.Thunderstorm {

 background‐color: #333;

 color: #fff;

}

When you have spaces in a class attribute (such as in
Partly Sunny and Partly Cloudy), the two words are
treated as separate class attributes. So, an element with a
class value of Partly Cloudy will be styled using the CSS
associated with .Cloudy, and an element with a class value of
Partly Sunny will be styled using the CSS associated with
.Sunny.

3. Click Update and Set as Base to save your work.

The Result pane updates and displays your forecast in a new,
more attractive format, as shown in Figure 17-8.

Figure 17-8: The finished Weather
Forecast app.

CHAPTER

18Using While Loops
The while loop will continue to perform its loop as long
as its conditions are met. The while loop will do the job until
it’s done — no questions asked!

In this chapter, we use a while loop to write a game that will
keep buying you sandwiches until you run out of money. The
object of the game is to make your lunch money last all week.

310 Part VI: Loops

Writing a while Loop
Compared to for loops, while loops are pretty simple. They only
have one part — a Boolean expression — that determines whether
the loop will run and continue to run.

Here’s an example of a while loop:

while (money > 0) {

 buyThings();

 saveMoney();

 payTaxes();

}

This loop executes the three functions — buyThings(),
 saveMoney(), and payTaxes() — as long as the value of the
money variable is greater than 0.

The for loop has a final expression that changes the value of the
counter. The while loop requires you to have an expression or
expressions inside the loop that can change the result of its
condition.

The three function calls we created inside the while loop are just
made up names. If we were to actually write these functions, they
would need to update the value of the money variable so that the
loop stops at some point (but, of course, this is one loop we hope
doesn’t stop!).

If you don’t modify the value of the variable in a while loop’s
condition, you may create what’s called an infinite loop. An infi-
nite loop won’t damage your computer, but it will likely cause
your web browser to freeze up and cause you to have to force it
to quit — risking losing any unsaved changes. So, make sure to
check your while loops carefully to make sure they’re not
infinite!

A while loop can do everything that a for loop can do, but the
coding is just a bit different. Let’s take a look at the three uses for
for loops that we talk about in Chapter 17 and show how to do
them with while.

311 Chapter 18: Using While Loops

Looping a certain number of times
Listing 18-1 shows how you can use a while loop to log Hello,
JavaScript! to the console window 500 times.

Listing 18-1 Logging Hello, JavaScript

var i = 0;

while (i < 500) {

 console.log(i + ": Hello, JavaScript!");

 i++;

}

Notice that the program in Listing 18-1 contains all the same three
parts that are in a for loop (initialization, condition, and final
expression), but only the condition is inside the parentheses. The
initialization (var i = 0;) is before the while loop, and the
final expression (i++) is inside the while loop.

Counting with while
To create a loop that counts, you can just modify a variable inside
every pass through the loop and use that variable inside other
statements in the loop.

Listing 18-2 shows a countdown like the one from Chapter 17, but
using a while loop.

Listing 18-2 Count Down with while

var count = 10;

while (count > 0) {

 alert(count);

 count‐‐;

}

alert("Blast Off!");

Looping through an array with while
Looping through arrays with while is easier than it is with for.
To loop through an array with while, change the condition in the
loop to test whether an array element has been declared.

312 Part VI: Loops

To test whether an element has been declared, just put the name
of the array with a counter variable inside the parentheses after
the while keyword.

For example, Listing 18-3 shows an example that loops through a
list of people’s names.

Listing 18-3 Looping through a List of Names

var people = ["Deborah","Carla","Mary","Suzen"];

var i = 0;

while (people[i]) {

 alert(people[i]);

 i++;

}

The condition between the parentheses in a for loop or a while
loop is a Boolean expression, which means it evaluates to either
true or false. When you use an array element, such as
 people[5] as a Boolean expression, it will be true as long as
there is an element in the array at that array position.

Coding the Lunch Game
The Lunch Game is a unique combination of a game of chance and
a game of math. The object of the game is to try to budget so that
you have sandwiches for every day of the week.

But, here’s the catch: You go to the strangest school in the world,
and you don’t know how much sandwiches will cost until the
sandwiches are made — but you have to buy all your sandwiches
for the week before the week starts!

You do know that sandwiches will always cost between $1 and $5.
So, depending on your luck, you’ll be able to buy somewhere
between 4 and 20 sandwiches.

How much risk are you willing to take? Will someone come to
your aid and give you part of their sandwich if you run out before
the week ends? How many sandwiches can you eat?

313 Chapter 18: Using While Loops

All these questions, and more, will be answered in the Lunch
Game.

Forking the code
To get started with writing the Lunch Game, follow these steps:

1. Go to our JSFiddle Public Dashboard at http://jsfiddle.
net/user/forkids/fiddles.

You see the list of all our public programs.

2. Find the program named “Chapter 18 – Lunch Game – Start,”
and click the title to open it.

The starter program opens, as shown in Figure 18-1.

We’ve written the HTML, CSS, and most of the JavaScript for you.
The only thing left for you to do is to write the buyLunches()
function.

In the next section, we show you how to do it!

Figure 18-1: The starter program for the Lunch Game.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

314 Part VI: Loops

Writing buyLunches()
Listing 18-4 shows the starter code and comments for the
buyLunches() function.

Listing 18-4 The Starting Point for buyLunches()

/*

buys specified number of sandwiches per day at current

prices

*/

function buyLunches() {

 /*

 todo:

 * reset the form

 * start a loop

 * get daily sandwich order

 * calculate total price

 * figure out if there's enough money

 * if so: subtract money, increment number of lunches,

and start loop over

 * if not: display 'out of money' message

 * display total lunches after loop exits

 */

}

Follow these steps to write the body of the function to match
these instructions:

1. Inside the body of the buyLunches() function, make a call to
the resetForm() function and initialize a variable for track-
ing the current day, like this:

resetForm();

var day = 0;

2. Create a loop that will buy sandwiches until you’re out of
money.

while (money > 0) {

315 Chapter 18: Using While Loops

3. Get the current price of sandwiches by making a call to the
getSandwichPrice() function and assigning the return
value to a variable.

var priceToday = getSandwichPrice();

At this point, take a look at the getSandwichPrice function.
Its purpose is to randomly generate a number between 1 and 5
and return that value.

4. Get the number of sandwiches that the user entered into the
form field.

var numberOfSandwiches = document.

getElementById("numSandwiches").value;

5. Calculate the total price by multiplying the number of
 sandwiches that you want by the current sandwich price.

var totalPrice = priceToday * numberOfSandwiches;

6. Find out whether there’s enough money to buy the
sandwiches.

if(money >= totalPrice) {

7. If there is enough, subtract the total price from the current
money balance.

money = money ‐ totalPrice;

Congratulations! You’ve successfully purchased a lunch!

8. Increment the lunches variable, which keeps track of how
many lunches were purchased.

lunches++;

9. Output a message to tell the user the price of the sandwiches
he just bought and how much money he has left.

316 Part VI: Loops

document.getElementById("receipt").innerHTML += "<p>On day " +

day + ", sandwiches are: $" + priceToday + ". You

have $" + money.toFixed(2) + " left.</p>";

Notice that we’ve attached the toFixed() method to the
money variable. The toFixed() method converts a number
to a string, while keeping the number of decimals specified
within the parentheses. In this case, because we’re printing
out a currency value, we use two decimal places.

10. Next, start the else clause of the if...else to handle cases
where the amount of money left isn’t enough to buy the speci-
fied number of sandwiches.

} else {

11. When the else clause runs, output a message that’s special
for when the user doesn’t have enough money for another
lunch.

document.getElementById("receipt").innerHTML += "<p>Today,

 sandwiches are: $" + priceToday + ". You don't have

enough money. Maybe your sister will give you some

of her sandwich.</p>";

12. Still within the else clause, set the value of money equal
to 0 in order to prevent the loop from running again.

money = 0;

13. Finish the if...else statement and the while loop with
curly brackets.

 }

}

14. When the loop completes, output the total number of lunches
that the user was able to buy.

document.getElementById("reciept").innerHTML += "<p>You bought " +

lunches + " lunches this week.</p>";

317 Chapter 18: Using While Loops

15. Close the function with a curly bracket.

}

16. Click Update and Set as Base in the top menu to save your
work.

Trying it out
The finished Lunch Game is shown in Figure 18-2.

If you enter a number into the text field and press the Place Order
button, the program calculates how many lunches you can buy,
using random sandwich prices. Remember: A lunch consists of
one or more sandwiches, according to your input.

Try out the program several times by entering new numbers into
the text input field and pressing the Place Order button. You see
that the random numbers and the number of lunches you can buy
per week vary quite a bit.

Figure 18-3 shows one possible outcome of running the program.

Figure 18-2: The finished Lunch Game.

318 Part VI: Loops

Moving to Your Own Website
When you have a game that you’re proud of and you want to
share with the world on your own website, you need to move
beyond the walls of JSFiddle. In this section, we show you how
to do that!

Understanding web hosting
Every website has a unique address that people can use to visit it.
In order to get your own address on the Internet, you need to sign
up with some sort of web hosting company. JSFiddle is a web
hosting company that provides a free testing area for people to
make programs with JavaScript, HTML, and CSS.

JSFiddle is great, but it has its limits, such as the fact that it
lets anyone copy and modify your code, and it doesn’t give you
the option of having your own domain name (such as www.
mywebsite.com).

Figure 18-3: Running the Lunch Game.

319 Chapter 18: Using While Loops

Most web hosting companies charge a monthly fee for uploading
your web pages to the Internet. However, there are some that give
out free trial accounts. In this section, we show you how to set up
and use a free trial account with x10Hosting (www.x10hosting.com).

It’s possible that x10Hosting may choose to start charging for
trial accounts or change in some way before we have a chance to
update this book. If this happens, you can find different free
 hosting options by searching the web for “free web hosting.”

Getting started with x10Hosting
Follow these steps to create an account and a website at
x10Hosting:

1. Open your web browser and go to www.x10hosting.com.

You see the home page, featuring a button labeled Sign Up
Now, as shown in Figure 18-4.

Figure 18-4: The home page of x10Hosting.

http://www.x10hosting.com
http://www.x10hosting.com

320 Part VI: Loops

2. Click the Create My Account button.

A form where you can enter a name for your custom web
address appears.

3. Choose a name for your hosting account, as shown in
Figure 18-5, and click Continue.

4. On the next screen, enter your email address and click
Continue.

5. Choose a password for your account, and click Continue.

6. Click to agree to the terms of service, and click Submit to
 finish signing up.

An email confirmation is sent to you.

7. Click the link in the email to confirm your account.

If you don’t get the email within a few minutes, check your
spam folder.

8. When your account is confirmed, click Continue to log in.

It may take minute for your account to be ready. If you see a
message telling you to wait, take a break and then come back
and click the Continue button when it becomes available.

9. Enter your name on the next page to personalize your account,
and then click Continue.

Figure 18-5: Choosing a name for your account.

321 Chapter 18: Using While Loops

10. When your domain is set up, you see a page with a help
 window, a link to your domain, and a link that says Open
cPanel.

11. Click the link that says Open cPanel.

Your control panel opens.

12. Click the Add Website link.

13. Give your site a name, leave the default domain selected,
and leave the address path text input blank, as shown in
Figure 18-6.

14. Click Add Website.

Your new site is created and you see the unique website
address.

Figure 18-6: Creating a new website.

322 Part VI: Loops

Make a note of this website address. You’ll be using it later!

15. Click Continue to My Websites.

16. In the control panel for your website, click the File Manager
link.

A window opens, showing you the files and directories in your
web hosting account (see Figure 18-7).

17. Click New File at the top of the screen.

18. Name the new file lunchgame.html and click Create New File.

19. Highlight the new file by clicking it, and then click Code Editor
in the top menu.

20. If this is your first time using the code editor, a window opens
asking you to choose an “encoding”; click the Disable
Encoding Check link.

A blank page opens in the code editor.

21. Type the HTML from Listing 18-5 into this blank page.

Figure 18-7: The File Manager.

323 Chapter 18: Using While Loops

22. In another browser tab, go back to your Lunch Game in
JSFiddle.

23. Copy everything inside the HTML pane, and paste it between
the opening and closing body tags in the code editor for your
lunchgame.html file.

24. Copy everything inside the CSS pane in JSFiddle and paste
it between <style> and </style> in the lunchgame.html
file.

25. Copy the first lines from the JavaScript pane, up to the
 function declaration for the buyLunches() function, and
paste it in the function body for the init() function in the
 lunchgame.html file, as shown in Listing 18-6.

Check your code carefully after you paste, to make sure that it
matches Listing 18-6 exactly.

Listing 18-5 A Standard HTML Template

<!doctype html>

<html>

<head>

 <title>Lunch Game</title>

<style>

</style>

<script>

function init() {

}

</script>

</head>

<body onload="init();">

</body>

</html>

324 Part VI: Loops

The init() function runs as soon as the web page is loaded.

26. Paste the rest of the JavaScript from the JavaScript pane in
JSFiddle below the init() function, but still between the
<script> and </script> tags.

27. Click Save in the upper‐right corner of the screen.

28. Click Close, just to the left of the Save button.

If you get a message regarding the character encoding, you
can just close it by clicking OK and you’re returned to the File
Manager.

29. Go to your website address in a new browser tab.

You see a list of the files in your website. Currently, you should
only have a folder called cgi‐bin and your lunchgame.html
file.

If you don’t want to see this list of web pages, you can create a
new HTML file called index.html, and it will appear when
you visit your website instead.

Listing 18-6 Finishing the init() Function

function init() {

// declare globals

var money = 20;

var lunches = 0;

//display lunch budget

document.getElementById("money").innerHTML = money;

//listen for order

document.getElementById("placeOrder").

addEventListener("click", buyLunches);

}

325 Chapter 18: Using While Loops

30. Click lunchgame.html to open the Lunch Game.

The Lunch Game appears in your browser window, as shown
in Figure 18-8.

Figure 18-8: The finished Lunch Game, hosted on your own website!

CHAPTER

19 Building a
Lemonade Stand

While working on your random weather forecaster and
your lunch app, you came up with a genius business idea: You
could combine the two programs to open a lemonade stand!

As the local weather forecaster for Anytown, you should have
an advantage over every other lemonade stand in the area.
Here’s how it works: People buy more lemonade when it’s hot
out. They’re also more willing to pay more money to buy lemon-
ade when it’s hot out. By setting your lemonade price and
deciding how much lemonade to make based on the weather,
you can maximize your profit and minimize wasted lemonade.

In this chapter, you learn how to build a lemonade stand game.

327 Chapter 19: Building a Lemonade Stand

Playing the Game
Before we get started building the lemonade stand game, let’s try
it out and see how it works!

Follow these steps to open and play the game:

1. Go to our JSFiddle Public Dashboard at http://jsfiddle.
net/user/forkids/fiddles.

2. Find the program titled “Chapter 19 – Lemonade Stand” and
open it by clicking the title.

The game will open and run. You see the Lemonade Stand
game, as shown in Figure 19-1.

3. Take a look at the weather forecasts for the week, in the top
part of the Result pane.

These are the daily weather forecasts that the game will use to
help calculate how many glasses of lemonade your stand sells.

Figure 19-1: The Lemonade Stand game.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

328 Part VI: Loops

4. Enter a number in the field labeled “How many glasses of lem-
onade do you want to make this week?”

Remember that you’re making lemonade for the whole week,
so the number should be large enough that you don’t run out
of lemonade before Friday! Hint: Try different quantities,
including some values in the hundreds.

5. Enter the price you want to charge per glass.

Your cost (how much you pay to make it) per glass is $0.50, so
make sure to price your lemonade higher than what it costs
you to make it.

6. Click the Open the Stand button.

A report of your daily and weekly sales will be displayed. Note
the last line of the report, which tells you how much profit you
made. Is this number greater than 0, or is it negative? If it’s
greater than 0, good job!

7. Try changing the price per glass or the number of glasses you
make based on the results you got and click Open the Stand
again.

Do you notice any patterns in how the profit increases or
decreases based on the price of lemonade? Can you figure out
how to maximize the profit and minimize the number of
glasses of lemonade you have left over?

8. Click Run in the top menu of JSFiddle to generate a new week’s
worth of weather and then try the game again.

9. Compare the number of glasses sold to the temperature
each day.

Notice that the daily temperature changes how many glasses
of lemonade you sell.

329 Chapter 19: Building a Lemonade Stand

Now that you’ve seen the lemonade stand program in action, let’s
back up and talk about a few math and business ideas that the
game is based on.

Whether you’re running a lemonade stand or just managing your
own allowance and how much you spend on comic books and
candy, these basic principles of economics apply.

A Lesson in Business
When you open a lemonade stand, you’re running a business. As a
new business owner, your primary goal is to make enough profit
to be able to continue running the lemonade stand.

You may have other goals for running a lemonade stand as well,
such as to spend your days outside in the sun, or to have fun talk-
ing with customers, or to learn to make the very best lemonade in
the world. But if you don’t make enough profit to be able to keep
the lemonade stand running, you can’t enjoy the other benefits of
having a lemonade stand.

In order to make a profit selling lemonade, you need to under-
stand your customers and why they buy lemonade from you. Just
as you may have many different reasons for running your lemon-
ade stand, customers may have many different reasons for buying
lemonade from you and many different factors influence their
decision. A few of the factors may include the weather, the price,
how much money they have, where your lemonade stand is
located, and how your lemonade tastes. Something as simple as
buying and selling lemonade can actually be very complicated!

In order to make a game out of a lemonade stand, we need to focus
on just a few of the many factors that are involved in the process.

Making a profit
Profit is what’s left over from the total revenue of a business (all
the money that comes in) after expenses (everything that the
business spends money on).

330 Part VI: Loops

In a lemonade stand, you may have all the following expenses:
lemons, sugar, ice, cups, and stand maintenance (things like paint,
repairs, and so on). You’ve done the math, and calculated that
when you combine all your expenses, the cost for you to make a
cup of lemonade is about $0.50. In order to make back your invest-
ment in the lemonade stand, you need to earn at least $0.50 for
each glass of lemonade that you make.

Understanding your customers
As you know, the temperature in Anytown changes all the time,
but one thing is for sure: The hotter it gets, the more lemonade
people buy. But if the price of lemonade is too high, people won’t
buy it.

As a lemonade stand owner, your goal is to figure out how much
lemonade to make and how much to charge for it in order to make
the greatest profit.

Understanding the math
Here’s the basic formula that our game uses to calculate how
much lemonade is sold each day:

Glasses Sold = Temperature ÷ Price

For example, if the temperature is 100 degrees, and the price of
lemonade is $2, the math looks like this:

Glasses Sold = 100 ÷ 2

The result is that you sold 50 glasses of lemonade.

However, if the temperature is lower, say 50 degrees, the formula
looks like this:

Glasses Sold = 50 ÷ 2

The result is that you only sold 25 glasses of lemonade.

331 Chapter 19: Building a Lemonade Stand

However, if you lower the price of lemonade to $1, the math looks
like this:

Glasses Sold = 50 ÷ 1

The result is that you can sell 50 glasses of lemonade at the lower
price when the temperature is lower.

Graphing sales, temperature, and price
Understanding the relationship among glasses sold, temperature,
and price is important to master the game. Follow these steps to
visualize this relationship using a 3D graph:

1. Go to www.wolframalpha.com in your web browser.

You’ll see the homepage of WolframAlpha, as shown in
Figure 19-2.

2. In the search form, type 3D plot.

You see the search results with a Function to Plot field, as
shown in Figure 19-3.

Figure 19-2: The WolframAlpha home page.

http://www.wolframalpha.com

332 Part VI: Loops

3. Below the Function to Plot field, click the Variables and
Ranges link.

Additional fields appear, as shown in Figure 19-4.

4. In the Function to Plot field, enter z = x/y.

The letter z represents the number of glasses sold, the letter x
represents the temperature, and the letter y represents the
price.

Figure 19-3: The Function to Plot field.

Figure 19-4: Variables and ranges.

333 Chapter 19: Building a Lemonade Stand

5. In the Lower Limit 1 field, enter 0.

The Lower Limit 1 field represents the lowest value we want to
graph for the variable x, which corresponds to the tempera-
ture value in our lemonade stand.

6. In the Upper Limit 1 field, enter 100.

This represents the maximum temperature value that we’ll
graph.

7. In the Lower Limit 2 field, enter 0.

This represents the lowest value for price in the lemonade
stand.

At $0 per glass, you’re sure to sell a lot of lemonade, but we
don’t recommend this strategy in the long run if you’re trying
to run a business!

8. In the Upper Limit 2 field, enter 10.

It’s unlikely that you’ll want to charge anyone more than $10
for a glass of lemonade, so we’ll set the upper limit to 10.

9. Click one of the orange equal sign buttons next to the input
fields to graph your function.

The results appear, and you see a graph similar to the one
shown in Figure 19-5.

Notice that on the graph in Figure 19-5, the highest possible
 number of glasses of lemonade sold happens when the tempera-
ture is at the maximum and the price is at the minimum.

WolframAlpha can do a lot of really interesting things! Feel free to
try out different values and try making different graphs.

334 Part VI: Loops

Building the Game
Now that you have a better understanding of the math behind the
lemonade stand, let’s build the game!

We’ve already started building it for you, so the first step is to
fork our code to make your own copy.

Forking the code
Follow these steps to make a copy of the starter app:

1. Log in to JSFiddle and go to our public dashboard at http://
jsfiddle.net/user/forkids/fiddles.

2. Find the program named “Chapter 19 – Lemonade Stand –
Start” and click its title to open it.

3. Click the Fork link in the top menu to create your own copy of
the program.

Figure 19-5: Graphing the relationship between
glasses sold, temperature, and price.

http://jsfiddle.net/user/forkids/fiddles
http://jsfiddle.net/user/forkids/fiddles

335 Chapter 19: Building a Lemonade Stand

4. Open the Fiddle Options in the left navigation and change the
title to “(Your Name)’s Lemonade Stand.”

5. Click Update and then Set as Base to save your own copy of
the Lemonade Stand game.

Writing the JavaScript
Take a look at the starter program for the Lemonade Stand game.
We’ve written enough HTML and CSS to get you started, but the
JavaScript pane is completely blank.

When you run the program, the HTML shows up in the Results
pane, but clicking the button doesn’t do anything.

Let’s walk through each thing that the Lemonade Stand needs to
do and write code and comments as we go.

Creating globals
The first thing we’ll do is to define some global variables that will
be used in the program. We’ll need the following:

 ✓ An array of days of the week

 ✓ An array of weather types

 ✓ Minimum and maximum temperature values

 ✓ The cost of making a cup of lemonade

 ✓ An array to hold actual daily temperatures

Before writing any code, create comments in the JavaScript
 window for each of these items, as shown in Listing 19-1.

Listing 19-1 Create Comments for Variables

// create days of week array

// define types of weather

(continued)

336 Part VI: Loops

Listing 19-1 (continued)

// set min and max temperatures

// cost (to you) of a cup of lemonade

// array for storing daily temps

Now that we have comments, follow these steps to fill in the
actual variable declarations.

1. Under the first comment (create days of week array),
type the following:

var days = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday"];

2. Under the next comment (define types of weather),
 create an array of descriptions of weather.

Here’s our array as an example:

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

Feel free to add or delete any types of weather you like.

3. Under the next comment (set min and max
 temperatures), create two new variables to hold the coldest
and hottest temperatures that you’d like to use in your game.

Here’s our example code:

var maxTemp = 100;

var minTemp = 0;

4. Under the next comment (cost of a cup of lemonade),
declare a variable named lemonadeCost and give it a numeric
value of your cost to make a cup of lemonade, in dollars.

var lemonadeCost = 0.5;

337 Chapter 19: Building a Lemonade Stand

5. Create an empty array, called dailyTemp, to hold the daily
temperature values.

var dailyTemp = [];

6. Click Update to save your work.

7. Your JavaScript pane should now look like Listing 19-2.

Listing 19-2 The Globals Have Been Created

// create days of week array

var days = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday"];

// define types of weather

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

// set min and max temps

var maxTemp = 100;

var minTemp = 0;

// cost (to you) of a cup of lemonade

var lemonadeCost = 0.5;

// array for storing daily temps

var dailyTemp = [];

Generating weather
The next step in writing our program is to generate the weather.
Fortunately, we already have a function for generating random
weather — namely, the random weather app that we wrote in
Chapter 17.

We’re going to make one addition to the generateWeather
 function from our random weather app created in Chapter 17.
We’ll store the daily weather in a global array called dailyTemp.

338 Part VI: Loops

Follow these steps to write the generateWeather function:

1. Write a comment describing the purpose of the function.

/**

generates weather for the week

**/

2. Write the function head.

function generateWeather() {

3. Create two function variables to hold the current weather and
temperature.

var weatherToday;

var tempToday;

4. Start a for loop to cycle through each day of the week.

for (var i = 0; i < days.length; i++) {

5. Get a random element from the weather array and assign it to
weatherToday.

weatherToday = weather[Math.floor(Math.random() * weather.

length)];

6. Get a random temperature between the values of minTemp and
maxTemp.

tempToday = Math.floor(Math.random() * (maxTemp ‐ minTemp) +

minTemp);

7. Store the temperature in the dailyTemp array.

dailyTemp[i] = tempToday;

8. Output a message describing the day’s weather.

document.getElementById("5DayWeather").innerHTML += "<div id='" +

days[i] + "' class='" + weatherToday +

"'>Forecast for " + days[i] + ":

" +

weatherToday + " and " + tempToday + " degrees.</

div>";

339 Chapter 19: Building a Lemonade Stand

9. Close the loop and the function.

 }

}

10. Call the function when the program loads, by typing the
 following below the global variable declarations.

generateWeather();

11. Click Update to save your work.

That completes the weather generation function. If you did
 everything correctly, a table of the week’s weather should
 display in the Result pane now, above the input fields, as shown
in Figure 19-6.

Compare your JavaScript with the code in Listing 19-3 and make
sure that they match before moving on.

Figure 19-6: The Result pane, containing weather and input
fields.

340 Part VI: Loops

Listing 19-3 The Completed Globals and the generateWeather Function

// create days of week array

var days = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday"];

// define types of weather

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

// set min and max temps

var maxTemp = 100;

var minTemp = 0;

// cost (to you) of a cup of lemonade

var lemonadeCost = 0.5;

// array for storing daily temps

var dailyTemp = [];

// make the week's weather

generateWeather();

/**

generates weather for the week

**/

function generateWeather() {

 var weatherToday;

 var tempToday;

 for (var i = 0; i < days.length; i++) {

 weatherToday = weather[Math.floor(Math.random() *

weather.length)];

 tempToday = Math.floor(Math.random() *

(maxTemp ‐ minTemp) + minTemp);

 dailyTemp[i] = tempToday;

341 Chapter 19: Building a Lemonade Stand

 document.getElementById("5DayWeather").innerHTML

+= "<div id='" + days[i] + "' class='" +

weatherToday + "'>Forecast for " + days[i]

+ ":

" + weatherToday + " and " +

tempToday + " degrees.</div>";

 }

}

Opening the stand
The next function we’ll create is the one that opens the stand and
calculates the number of glasses sold for the week.

Follow these steps to write the openTheStand function.

1. Write a comment describing the function and then write the
function head.

/**

calculates glasses of lemonade sold

**/

function openTheStand() {

2. Create three new variables — one to hold the daily number of
glasses sold, one to hold the weekly total, and one to hold the
number of glasses we have left to sell — and initialize all three
with 0.

var glassesSold = 0; // daily

var totalGlasses = 0; // weekly

var glassesLeft = 0; // left to sell

3. Call a function named resetForm(), which resets the report
area of the program so that it can be run multiple times
 without restarting the game.

// clear previous results

resetForm();

We’ll write the resetForm function after we finish
openTheStand();.

342 Part VI: Loops

4. Get the values from the form fields.

// get input

var numGlasses = Number(document.getElementById("numGlasses").

value);

var glassPrice = Number(document.getElementById("glassPrice").

value);

5. Create a new loop to cycle through each day of the week.

for (var i = 0; i < days.length; i++) {

6. Calculate the number of glasses sold.

// glasses sold depends on temp and price

glassesSold = Math.floor(dailyTemp[i] / glassPrice);

7. Calculate how many glasses are left.

// how many glasses do we have now?

glassesLeft = numGlasses ‐ totalGlasses;

8. Write an if...else statement that checks whether you’re
out of lemonade.

// we can't sell more than we have

if (glassesSold > glassesLeft) {

 glassesSold = glassesLeft;

}

If glassesSold is greater than what we have left, just sell
what we have left by setting the glassesSold variable equal
to what’s left.

9. Increase the weekly total of glasses sold.

// increase the weekly total

totalGlasses = glassesSold + totalGlasses;

10. Display the daily totals.

// display daily total

document.getElementById("result").innerHTML += "<p>" + days[i] +

", you sold " + glassesSold + " glasses of

 lemonade.</p>";

343 Chapter 19: Building a Lemonade Stand

11. Finish the loop with a curly bracket.

}

12. Make a call to the function that will display the weekly results,
passing it three arguments: numGlasses, glassPrice, and
totalGlasses.

displayResults(numGlasses,glassPrice,totalGlasses);

13. Finish the function by typing a closing curly bracket.

}

14. Save your work by clicking Update.

If you did everything right, your openTheStand function should
match the code in Listing 19-4.

Listing 19-4 The openTheStand Function

/**

calculates glasses of lemonade sold

**/

function openTheStand() {

 var glassesSold = 0; // daily

 var totalGlasses = 0; // weekly

 var glassesLeft = 0; // left to sell

 // clear out previous results

 resetForm();

 // get input

 var numGlasses = Number(document.

getElementById("numGlasses").value);

 var glassPrice = Number(document.

getElementById("glassPrice").value);
(continued)

344 Part VI: Loops

Listing 19-4 (continued)

 for (var i = 0; i < days.length; i++) {

 // glasses sold depends on temp and price

 glassesSold = Math.floor(dailyTemp[i] /

glassPrice);

 // how many glasses do we have now?

 glassesLeft = numGlasses ‐ totalGlasses;

 // we can't sell more than we have

 if (glassesSold > glassesLeft) {

 glassesSold = glassesLeft;

 }

 // increase the weekly total

 totalGlasses = glassesSold + totalGlasses;

 // display daily total

 document.getElementById("result").innerHTML +=

"<p>" + days[i] + ", you sold " + glassesSold +

" glasses of lemonade.</p>";

 }

 displayResults(numGlasses, glassPrice, totalGlasses);

}

Resetting the program
One of the first things that the openTheStand() function does is to
make a call to a function called resetForm(). This function is very
simple. Its sole purpose is to clear out the content from the report
area of the program so that you can run the program again without
the results being added to the bottom of the previous output.

Listing 19-5 shows the complete code for resetForm(). Type this
function into the JavaScript pane, underneath the openTheStand()
function (at the very end of the code in the JavaScript pane).

345 Chapter 19: Building a Lemonade Stand

Listing 19-5 The resetForm() Function

/**

resets the game so that a new order can be placed

**/

function resetForm() {

 document.getElementById("result").innerHTML = "";

}

After you’ve written the resetForm() function, click the Update
link to save your work.

Displaying a report
The final function in the Lemonade Stand game is the display
Results() function. This function calculates weekly results using
arguments supplied to it by the openTheStand() function and
outputs a report about how you did.

Follow these steps to write displayResults().

1. Write a comment describing the function and the function
header, with three parameters: weeklyInventory,
glassPrice, and weeklySales.

/**

calculates results and displays a report

**/

function displayResults(weeklyInventory, glassPrice, weeklySales)

{

2. Calculate your total revenue by multiplying the total number
of glasses sold times the price that was paid for each glass.

var revenue = weeklySales * glassPrice;

3. Calculate your expenses by multiplying the number of glasses
of lemonade you made times the cost (to you) of each glass.

var expense = weeklyInventory * lemonadeCost;

346 Part VI: Loops

4. Calculate how many glasses are left over by subtracting the
total sales from the number of glasses you made.

var leftOver = weeklyInventory ‐ weeklySales;

5. Calculate your profit by subtracting expenses from the total
revenue.

var profit = revenue ‐ expense;

6. Write out the final report using the following four statements:

// print out the weekly report

document.getElementById("result").innerHTML += "<p>You sold a

total of " + weeklySales + " glasses of lemonade

this week.</p>";

document.getElementById("result").innerHTML += "<p>Total revenue:

$" + revenue + ".</p>";

document.getElementById("result").innerHTML += "<p>You have " +

leftOver + " glasses of lemonade left over.</p>";

document.getElementById("result").innerHTML += "<p>Each glass

costs you $" + lemonadeCost + ". Your profit was $"

+ profit + ".";

7. Finish the function with a closing curly bracket.

}

8. Click Update to save your work.

The final function should match Listing 19-6.

Listing 19-6 The Final displayResults Function

/**

calculates results and displays a report

**/

function displayResults(weeklyInventory, glassPrice,

weeklySales) {

 // calculate results

 var revenue = weeklySales * glassPrice;

 var expense = weeklyInventory * lemonadeCost;

347 Chapter 19: Building a Lemonade Stand

 var leftOver = weeklyInventory ‐ weeklySales;

 var profit = revenue ‐ expense;

 // print out the weekly report

 document.getElementById("result").innerHTML += "<p>You

sold a total of " + weeklySales + " glasses of

lemonade this week.</p>";

 document.getElementById("result").innerHTML +=

"<p>Total revenue: $" + income + ".</p>";

 document.getElementById("result").innerHTML += "<p>You

have " + leftOver + " glasses of lemonade left

over.</p>";

 document.getElementById("result").innerHTML +=

"<p>Each glass costs you $" + lemonadeCost + ".

Your profit was $" + profit + ".";

}

Finishing and testing the program
If you try out the program now, you’ll discover that it doesn’t do
anything except print out the random weather forecast.

There’s one thing left that we need to do. Do you know what it is?

If you said that we need to listen for the click event on the
 button, you’re exactly right. The click event is the switch the
makes the lemonade stand work.

Follow these steps to finish the program and test it out.

1. Type the following code before the function declarations in the
JavaScript pane:

// listen for order

document.getElementById("OpenTheStand").addEventListener("click",

openTheStand);

2. Click Update and Set as Base to save your work.

The final code in the JavaScript pane should match Listing 19-7.

348 Part VI: Loops

Listing 19-7 The Lemonade Stand Program

// create days of week array

var days = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday"];

// define types of weather

var weather = ["Sunny", "Partly Sunny", "Partly Cloudy",

"Cloudy", "Raining", "Snowing", "Thunderstorm",

"Foggy"];

// set min and max temps

var maxTemp = 110;

var minTemp = 32;

// cost (to you) of a cup of lemonade

var lemonadeCost = 0.5;

// array for storing daily temps

var dailyTemp = [];

// listen for order

document.getElementById("OpenTheStand").

addEventListener("click", openTheStand);

// make the week's weather

generateWeather();

/**

generates weather for the week

**/

function generateWeather() {

 var weatherToday;

 var tempToday;

 for (var i = 0; i < days.length; i++) {

 weatherToday = weather[Math.floor(Math.random() *

weather.length)];

 tempToday = Math.floor(Math.random() * (maxTemp ‐

minTemp) + minTemp);

 dailyTemp[i] = tempToday;

349 Chapter 19: Building a Lemonade Stand

 document.getElementById("5DayWeather").innerHTML

+= "<div id='" + days[i] + "' class='" +

weatherToday + "'>Forecast for " + days[i]

+ ":

" + weatherToday + " and " +

tempToday + " degrees.</div>";

 }

}

/**

calculates glasses of lemonade sold

**/

function openTheStand() {

 var glassesSold = 0; // daily

 var totalGlasses = 0; // weekly

 var glassesLeft = 0; // left to sell

 // clear previous results

 resetForm();

 // get input

 var numGlasses = Number(document.

getElementById("numGlasses").value);

 var glassPrice = Number(document.

getElementById("glassPrice").value);

 for (var i = 0; i < days.length; i++) {

 // glasses sold depends on temp and price

 glassesSold = Math.floor(dailyTemp[i] /

glassPrice);

 // how many glasses do we have now?

 glassesLeft = numGlasses ‐ totalGlasses;

 // we can't sell more than we have

 if (glassesSold > glassesLeft) {

 glassesSold = glassesLeft;

 }

(continued)

350 Part VI: Loops

Listing 19-7 (continued)

 // increase the weekly total

 totalGlasses = glassesSold + totalGlasses;

 // display daily total

 document.getElementById("result").innerHTML +=

"<p>" + days[i] + ", you sold " + glassesSold +

" glasses of lemonade.</p>";

 }

 displayResults(numGlasses, glassPrice, totalGlasses);

}

/**

calculates results and displays a report

**/

function displayResults(weeklyInventory, glassPrice,

weeklySales) {

 // calculate results

 var revenue = weeklySales * glassPrice;

 var expense = weeklyInventory * lemonadeCost;

 var leftOver = weeklyInventory ‐ weeklySales;

 var profit = revenue ‐ expense;

 // print out the weekly report

 document.getElementById("result").innerHTML += "<p>You

sold a total of " + weeklySales + " glasses of

lemonade this week.</p>";

 document.getElementById("result").innerHTML +=

"<p>Total revenue: $" + revenue + ".</p>";

 document.getElementById("result").innerHTML += "<p>You

have " + leftOver + " glasses of lemonade left

over.</p>";

 document.getElementById("result").innerHTML +=

"<p>Each glass costs you $" + lemonadeCost + ".

Your profit was $" + profit + ".";

}

351 Chapter 19: Building a Lemonade Stand

/**

resets the game so that a new order can be placed

**/

function resetForm() {

 document.getElementById("result").innerHTML = "";

}

Figure 19-7: The final Lemonade Stand game.

3. Enter a value into the form field labeled “How many glasses of
lemonade do you want to make for the week?”

4. Enter a value into the form field label “How much will you
charge for a glass of lemonade this week?”

5. Press the Open the Stand button.

You see how many glasses of lemonade you sold each day,
 followed by the weekly totals and the profit, as shown in
Figure 19-7.

352 Part VI: Loops

How did you do? Did you make a profit? Can you increase your
profit by changing the price or number of glasses? Does one of the
methods of increasing profit seem to work better than the other?
What happens when you set either the price or the glasses of
 lemonade to a very large number? What happens when either one
is set to a very small number?

When you’re ready, move on to the next section to get some ideas
for improvements you may want to make to the Lemonade Game!

Improving the Lemonade Game
The Lemonade Game is interesting and demonstrates a number of
important JavaScript principles. By now, however, you likely have
ideas for how it could be improved to be more of a challenge,
more fun, or more realistic.

If you’ve made it this far in the book, you have a good understand-
ing of JavaScript and you’re ready to head off on your own and
start modifying and building programs by yourself. Excellent work!

Here are a few ideas to get you started with making modifications
to the Lemonade Stand game:

 ✓ Allow the user to control the price and how much lemonade is
made on a daily basis, rather than weekly.

 ✓ Factor the type of weather (rainy, snowy, and so on) into the
calculation of how many glasses were sold, instead of just
using the temperature.

 ✓ Randomize the cost (the price you pay) per glass of lemonade.

 ✓ Write more HTML and CSS to improve, or just change, the look
of the game.

 ✓ Create a button that generates new random weather for a new
week, instead of making the player start the game over when
they want a new week of weather.

353 Chapter 19: Building a Lemonade Stand

 ✓ Save the user’s high score in a variable and let them know if
they improve from game to game.

 ✓ Calculate the cost of lemonade based on values for the price
of lemons and the price of sugar, as well as how many lemons
and how much sugar it takes to make how many glasses of
lemonade.

 ✓ Create random events in the game, such as blizzards or dogs
that knock over the stand, which sometimes cause no lemon-
ade at all to be sold on a day.

These are just a few of the hundreds of different improvements
that could be made to the Lemonade Stand game. If you make an
improvement that you want to share, please show it to us on
Facebook, Twitter, or via email at info@watzthis.com. We’re
excited to see what you come up with!

mailto:info@watzthis.com

Index

Symbols and Numerics
+ (addition), 150–151
&& (and operator), 239
== (equality operator), 145–148, 234
> (greater than operator), 149, 151
>= (greater than or equal to

operator), 149–150
!= (inequality operator), 148
|| (or operator), 239
=== (strict equality operator), 147,

234
!== (strict inequality operator),

148–149
; (semicolon)

in CSS declarations, 93
to separate statements, 25, 31

A
Activity Calendar program,

255–266
building, 261–266
Date object, 257–261
forking, 256–257
introduction to, 255
using, 256

addEventListener method,
111–113, 116, 163

addition (+), 150–151
addition operator, 140

addTheThing() function, 216, 222
addToTheList() function, 216,

219–222
<a> element, 79
alert() command, 44–46
alert() function, 193
alert keyword, 25
alt attribute, 82
and operator (&&), 239
animation

creating with JavaScript, 115–117
Douglas the JavaScript Robot,

104–122
adding a second animation

function, 118–122
animating another element, 118
arm sweep animation, 118–120
changing CSS with JavaScript,

105–106
creating animations with

JavaScript, 115–117
experimenting with Douglas,

108–109
handling events, 111–113
making Douglas dance, 109–111
modifying Douglas with JavaScript,

106–108
writing a listener, 113–115

appendChild() method, 222
arguments, passing, 195
arithmetic operators, 140–143
arm sweep animation, 118–120

JavaScript For Kids For Dummies 356
array methods, 177–178

in JSFiddle, 178–179
arrays, 173–189

changing element values, 176–177
creating and accessing, 175–176
definition of, 174–175
empty, 278
in general, 173
getting array values, 176
storing different data types in, 175
variables inside, 176

askQuestion() function,
280–283, 287

assignment operator, 43
asterisk (*), to multiply numbers, 20
<audio> tag, 73

B
backslash ()

printing a, 28
in a string, 27

Beginning HTML5 and CSS3 For
Dummies, 78

beginning tags, 73
binary codes, 9–10
bit, 10
body element, 76, 91, 94, 160, 161
Boolean data type, 41–42
branching, defined, 267
bubbles, size of, 62
Bubbles demo, 55–57, 60, 64

sharing your fiddle, 65–66
built-in functions, 191
buyLunches() function, 313, 314, 323
bytes, 10

C
calculateDelivery() function, 245,

247, 248
calculatePrice() function, 242
calling a function, 194
camelCase, 35
capitalization, 29, 30, 106
capital letters, for words in variable

names, 34
cascading

defined, 101
understanding, 101

Cascading Style Sheets (CSS)
basics of, 90–91
changing with JavaScript,

105–109
Function Junction, 197–200
Martian Rescue! game, 272–276
resizing elements with, 98–101
Word Replacement Game, 160

cases, switch statements, 253
central processing unit (CPU), 9
checkPosition() function,

203–204
Chrome Developer Tools
class selectors, 92
Clear Console Log button, 218
clearInterval statement, 117
code

curly brackets used for grouping
pieces of, 30

forking
Activity Calendar program,

256–257
defined, 63

357
JavaScript Pizzeria, 241
Lemonade Stand game, 334–335
Lunch Game, 313
Martian Rescue! game, 271
Super-Calculator, 138–139
Wish List program, 208–209

JavaScript. See also Martian Rescue!
game; Wish List program

array methods, 177–178
changing CSS with, 105–109
changing HTML with, 83–87
creating animations with, 115–117
examples of websites that use,

13–14
Function Junction, 200–204
Lemonade Stand game, 335
overview, 12–13
Word Replacement Game, 163–165

text in, 29–30
coding (computer programming), 8
color names, HTML, 58–59
colors, CSS, 96–97
color swatch, hexadecimal value,

58–59
comments

making, 31–32
multi-line, 32
single-line, 32

comparison operators, 137, 145–150
compilation, defined, 10, 23
compilers, defined, 8
computer programmers, first, 8
computer programming, 8
computer programs

defined, 8
examples of things that can be

done by, 9

concat() array method, 178, 181
concatenation, 20
concatenation/assignment operator

(+=), 164
concatenation operator, 137, 141,

142, 153, 164
condition statement, for loops, 296
continueStory() function, 284, 285,

288–290
countdown, 297–298
CPU (central processing unit), 9
createElement() method, 220
CSS (Cascading Style Sheets)

basics of, 90–91
changing with JavaScript, 105–109
Function Junction, 197–200
Martian Rescue! game, 272–276
resizing elements with, 98–101
Word Replacement Game, 160

CSS declarations, 93
CSS pane, 55–60

dream car, 133
CSS properties, 93–96
CSS rule, 91
CSS selectors, 91–93
curly braces (), creating objects, 130
curly brackets (}), 30, 31
currentPosition variable, 203, 204
customers, Lemonade Stand game,

330
custom functions, 191–193

D
data. See also input

prompting the user for input, 42–43
data types, 38–42

 Index

358
data types (continued)

in arrays, 175
Boolean, 41–42
combining two different, 41
definition of, 38
number, 40–41
of operands, 126–129
string, 38–40

dayOfWeek variable, 263
debugging, origin of term, 8
declaration block, CSS rule, 91
defining a function, 193–194
Developer Tools, Chrome, 16–18

clearing, 20
experimenting with, 21
introduction to, 18
overview, 17
potential to be misused, 18
running your first commands, 19

displayActivity() function, 262, 263
displayDate() function, 262
display:none, turning off elements

with, 273–275
displayResults() function, 345, 346,

350
<div> elements, 79, 157, 158, 161,

163, 211
document, 47
document.write(), 47, 49
Double Quotes within Single

Quotes, 29
Douglas the JavaScript Robot,

90–103
animating

adding a second animation
function, 118–122

animating another element, 118

arm sweep animation, 118–120
changing CSS with JavaScript,

105–106
creating animations with

JavaScript, 115–117
experimenting with Douglas,

108–109
handling events, 111–113
making Douglas dance,

109–111
modifying Douglas with JavaScript,

106–108
writing a listener, 113–115

cascading, 101
CSS colors, 96–97
CSS declarations, 93
CSS properties, 93–96
CSS selectors, 91–93
customizing your own robot, 103
positioning elements with CSS,

101–102
resizing elements with CSS,

98–101
responsive design, 98

dream car (dreamCar object)
color of the car, 135
configuring, 132–135
creating, 131
CSS pane, 133
customizing, 134–135
generic car, 133–134
HTML pane, 132
JavaScript pane, 134
make and model of the car, 135
model year on the price tag,

135
price tag, 133–135

JavaScript For Kids For Dummies

359

E
elements

adding attributes to, 81–83
positioning with CSS, 101
resizing with CSS, 98

element selectors, 91
 element, 78
empty arrays, 278
ending tags, 73
equality operator (==), 145–148, 234
escaping quotation marks, 27–29
event handler

addEventListener method, 111–112
defined, 86

event listeners
Listing 13-2, 214
Martian Rescue! game, Martian

Rescue! game, JavaScript, 279
Wish List program, 212–214

events
defined, 111
examples of, 111
handling, 111–113
listening for, 112
in web browsers, 111–112

event target, 112
eye bounce, 110, 113, 115

F
Facebook

JavaScript used by, 14, 15
sharing your programs on, 65

FF, in hexadecimal notation, 97
FILO (First In, Last Out), 75

final expression, for loops, 297
float:left property, 161
flow charts, 268–269
font-family style, 160
font size, 94
<footer> tag, 74
Fork button, 63
forking the code

Activity Calendar program, 256–257
defined, 63
JavaScript Pizzeria, 241
Lemonade Stand game, 334–335
Lunch Game, 313
Martian Rescue! game, 271
Super-Calculator, 138–139
Wish List program, 208–209

for loops, 295–308
parts of, 296–297
random weather forecasting

id and class attributes, 305–307
Listing 17-5 The Finished

JavaScript Code, 303–304
Math.random() function,

299–301
styling the app, 307–308
writing the app, 301–303

sample, 296
writing and using, 297–298

forward slash (/), 20
frames, in an animation, 115
function body, 194
function head, 194
Function Junction, 196–205

CSS pane, 197–200
HTML for, 197
JavaScript pane, 200–204

function keyword, 193

 Index

360
functions

built-in, 191
calling, 194
custom, 191–193
defining, 193–194
defining parameters, 194–195
example of, 192
overview, 190–191
returning a value, 195–196
Wish List program, 215–227

addTheThing(), 216, 222
addToTheList(), 216, 219–222
printView(), 217–218, 224, 226
resetInput(), 222–224

Function technique, 194

G
games

Function Junction, 196–205
Lunch Game, 312–317
Martian Rescue!, 269–292
Word Replacement, 153–170

generateWeather() function, 302
getAnswer() function, 283, 284, 286
getDate() method, 258, 259
getDay() method, 258, 259
getElementById, 83–87
getFullYear() method, 258, 259
getHours() method, 259
getMilliseconds() method, 259
getMonth() method, 259
getSeconds() method, 259
getter methods, 258–259
getTime() method, 259
gigabyte, 10

global variables
Lemonade Stand game, 335
Martian Rescue! game, 278
Wish List program, 214–215

Google Chrome, 14–16
Developer Tools, 16–18
installing, 16

graphing sales, temperature, and
price, Lemonade Stand game,
331–333

greater than operator (>), 149, 151
greater than or equal to operator

(>=), 149–150

H
hash symbol (#)

for hexadecimal code, 97
for ID selectors, 92

head element, 75
headers, 76
<header> tag, 74
hexadecimal notation, 97

for CSS colors, 58
Hopper, Grace Murray, 8
<hr> element, 79
<h1> element, 76
<h1> through <h6> elements, 78–79
HTML (Hypertext Markup Language),

72–88
Bubbles demo, 60–61
changing with JavaScript, 83–87
definition of, 72
elements of, 78–81
for Function Junction, 197
getElementById, 84

JavaScript For Kids For Dummies

361
Martian Rescue! game, 272–276
tags in, 61, 72–75
text without, 72
for Wish List program, 210–212
for Word Replacement Game, 156

<html> and </html> tags, 75, 77
HTML attributes, 81–83
HTML elements, defined, 73
HTML pane

creating your first web page, 76–77
dream car, 132
JSFiddle, 60

I
ID attributes, 82–83

ID selectors and, 92–93
selecting an element with

getElementById and, 84
ID selectors, 92–93
if...else statements

branching, 267
to choose between two paths, 237
introduction to, 236–238
and operator (&&) in, 239
variables without operators,

237–238
 tag, 73
increment operator, 117
indentation, 31
indexOf() array method, 178,

181–182
indexOf() method, 40
inequality operator (!=), 148
init() function, 323–324
initialization statement, for loops,

296

innerHTML method, 84–87
innerHTML property, 220
input

combining output and, 48–50
defined, 33
prompting the user for, 42–43
responding to, 44–46
storing user input, 43–44

inputToReset variable, 224
Interactive Sock Puppet, 14

J
JavaScript code

array methods, 177–178
changing CSS with, 105–109
changing HTML with, 83–87
creating animations with,

115–117
examples of websites that use,

13–14
Function Junction, 200–204
Lemonade Stand game, 335
Martian Rescue! game

askQuestion() function, 280–283
continueStory() function, 284,

285, 288–290
element shortcuts, 278
empty arrays, 278
getAnswer() function, 283, 284,

286
Listing 16-4 The Starter JavaScript

for Martian Rescue!, 277
theEnd() function, 290–291
writing the functions, 281–284

overview, 12–13
Wish List program, 212–229

 Index

362
JavaScript code (continued)

declaring global variables, 214–215
event listeners, 212–214

Word Replacement Game code,
163–165

JavaScript Console (Developer Tools
Console)

clearing, 20
experimenting with, 21
introduction to, 18
potential to be misused, 18
running your first commands, 19

JavaScript pane, JSFiddle, 61–63
JavaScript Pizzeria, 240–251

adding the new item to the menu,
241–243

delivering to other cities, 243–245
displaying the delivery fee, 245–246
forking the code, 241
planning improvements, 241
programming the birthday special,

246–248
running current version of the

website, 240
join() array method, 178, 182–183
JSFiddle

Activity Calendar program, 256–257
array methods, 178–179
creating an account, 63–65
CSS pane, 55–60
HTML pane, 60
introduction to, 52–53
JavaScript pane, 61–63
Log In page, 63–64
overview, 51
playing with fiddles, 54–55
public dashboard, 53

creating your own public
dashboard, 67–68

running your first JSFiddle
program, 53

saving your app, 67–68
user interface, 52
viewing fiddles, 53–54
website, 52

K
kilobyte, 10

L
<label> element, 210
languages, programming

choosing, 11–12
examples of, 11–12
function of, 10

lastIndexOf() array method,
183–184

Lemonade Stand game, 326–353
building the game, 334–351

creating globals, 335–337
forking the code, 334–335
writing the JavaScript, 335

business lesson, 329
displaying a report, 345–346
finishing and testing the program,

347–351
generating weather, 337–339
graphing sales, temperature, and

price, 331–334
improving, 352–353
making a profit, 329–330

JavaScript For Kids For Dummies

363
opening the stand, 341–343
playing the game, 327–329
resetting the program, 344–345
understanding the math, 330–331
understanding your customers, 330

<.>length, 38
length of a string, 38–39
less-than operator (<), 150
less-than-or-equal-to operator (<=),

150
 element, 76, 79, 157, 158, 161,

162
line breaks, 30–31
listener

overview, 112
writing a, 113–115

Listing 2-1 A JavaScript Statement, 24
Listing 2-2 A Program to Print a

Message 300 Times, 26
Listing 2-5 White Space Makes

Programs Easier to Read, 30
Listing 2-6 Single-Line Comments, 32
Listing 2-7 Multi-Line Comment, 32
Listing 5-1 A List, 72
Listing 5-2 A Simple HTML

Document, 74
Listing 5-3 Updated Home Page, 81
Listing 5-4 Updated Home Page with

id Attributes Added, 83
Listing 5-5 Final JavaScript for the

HTML Homepage App, 87-88
Listing 7-1 Code Required in the

JavaScript Pane to Enable the
Eye Bounce, 115

Listing 7-2 Finished moveRightLeft
Function, 120

Listing 7-3 JavaScript Required to
Implement Both of Douglas’s
Dance Moves, 121

Listing 10-1 Completed Markup in
the HTML Pane, 168

Listing 10-2 Completed Code in the
JavaScript Pane, 168-170

Listing 12-1 Function Junction CSS,
198

Listing 12-2 JavaScript Pane with
Comments Indicating What to
Do, 200

Listing 13-1 HTML for the Wish List
Program, 212

Listing 13-2 Event Listeners, 214
Listing 13-3 Event Listeners and

Global Variables, 215
Listing 13-4 Finished addTheThing()

Function, 216
Listing 13-5 Finished addToTheList()

Function, 222
Listing 13-6 Finished resetInput()

Function, 224
Listing 13-7 Finished printView()

Function, 226
Listing 14-1 Using if. . .else, 236
Listing 14-2 Using Single-Word

Operators, 238
Listing 14-3 Pizza Parlor Free

Delivery Rule in JavaScript, 239
Listing 14-4 Free Delivery on Your

Birthday, 239
Listing 14-5 The Completed

JavaScript Pizzeria Program,
248-250

Listing 14-6 The Final HTML, 250-251

 Index

364
Listing 15-1 Produce Different

Results for Different Input, 254
Listing 15-2 The Starting JavaScript

for the Activity Calendar, 261-262
Listing 15-3 The Finished Program,

264-266
Listing 16-1 The Beginning of the

HTML, 272
Listing 16-2 The CSS for Martian

Rescue!, 273-274
Listing 16-3 The First storyPart div,

275-276
Listing 16-4 The Starter JavaScript

for Martian Rescue!, 277
Listing 16-5 The Beginning of the

JavaScript, 280
Listing 16-6 The Finished

askQuestion() Function, 282-283
Listing 16-7 The Finished

getAnswer() Function, 284
Listing 16-9 The theEnd() Function,

291
Listing 17-1 JavaScript Countdown,

297
Listing 17-2 Outputting Array Values

with for, 298
Listing 17-3 A Random Number Alert,

299-300
Listing 17-4 Finding a Random

Friend, 301
Listing 17-5 The Finished JavaScript

Code, 303-304
Listing 18-1 Logging Hello,

JavaScript, 311
Listing 18-3 Looping through a List of

Names, 312

Listing 18-4 The Starting Point for
buyLunches, 314

Listing 18-5 A Standard HTML
Template, 323

Listing 18-6 Finishing the init()
Function, 324

Listing 19-1 Create Comments for
Variables, 335-336

Listing 19-2 The Globals Have Been
Created, 337

Listing 19-3 The Completed Globals
and the generateWeather
Function, 340-341

Listing 19-4 The openTheStand
Function, 343-344

Listing 19-5 The resetForm()
Function, 345

Listing 19-6 The Final displayResults
Function, 346-347

Listing 19-7 The Lemonade Stand
Program, 348-351

lists
changing, 85–88
ordered, 76
unordered, 76

local variables, 214
logical operators, combining

comparisons with, 238–239
loops, 295–308

for. See for loops
while

example of, 310
introduction to, 309
Lunch Game, 312–317
writing, 310–311

Lovelace, Ada, 8

JavaScript For Kids For Dummies

365
Lunch Game, 312–317

buyLunches() function, 313, 314,
323

coding, 312–317
forking the code, 313
trying it out, 317
web hosting, 318–325

M
machine language

compilation into, 10
purpose of, 10

Martian Rescue! game, 269–292
forking the code, 271
HTML and CSS, 272–276
JavaScript code

askQuestion() function,
280–283

continueStory() function, 284,
285, 288–290

element shortcuts, 278
empty arrays, 278
getAnswer() function, 283, 284,

286
Listing 16-4 The Starter JavaScript

for Martian Rescue!, 277
theEnd() function, 290–291
writing the functions, 281–284

looking at (or not looking at) the
story parts, 275–276

playing the game, 269–271
turning off elements with

display:none, 273–275
writing the story, 269

Math.floor() function, 300

Math.random() function, 299–301
megabyte, 10
methods

array, 177–178
defined, 39
getter, 258–259

minus sign, 20
modulo operation, 137, 143
moveRightLeft function,

119, 120
moveUpDown listener function, 113,

118, 119
multi-line comments, 32
myElement variable, 278
myListArea variable, 215, 222

N
name/value pair, 82
newList function, 86
newListItem variable, 220, 221
number data type, 40–41

O
objects

creating, 130–131
overview, 46
working with, 130–132

 and tags, 75, 79
ol element, 76
openTheStand() function, 341,

343–345
operands, 126

data types of, 126–129

 Index

366
operands (continued)

object type, 130–131
overview, 126
Super-Calculator, 139, 140
variables as, 127–128

Operate button, 140–144, 146–151
operator

addition, 140
assignment, 43
concatenation, 137, 141, 142,

153, 164
increment, 117

operators, 136–152
arithmetic, 140–143
comparison, 137, 145–150
defined, 136
greater than (>), 149
greater than or equal to (>=),

149–150
inequality (!=), 148
less-than (<), 150
less-than-or-equal-to (<=), 150
logical, combining comparisons

with, 238–239
strict equality (===), 147, 234
strict inequality (!==), 148–149
variables without, 237–238

ordered lists, 76
or operator (||), 239
output

combining input and, 48–50
defined, 33

P
<p> and </p> tags (p element), 61, 91
parameters, 194–195
passing an argument, 195

p element (<p> and </p> tags),
61, 91

percent, as units of measurement,
98–100

period (.), for class selectors, 92
pixels, as units of measurement, 98
placeOrder() function, 245, 247, 248
pop() array method, 178, 184–185
positioning elements with CSS, 101
price tag, for dream car, 133–135
Print dialog box, browser’s, 227–228
printing, program that prints out the

words “Coding is fun!” 300 times,
25–26

print() method, 227
printView() function, 217–218, 224,

226, 227
Print Your List button, 208, 210–211,

224, 227
profit, Lemonade Stand game,

329–330
program(s)

that prints out the words “Coding is
fun!” 300 times, 25–26

things all programs have in
common, 33

programming (coding), 8
programming languages

choosing, 11–12
examples of, 11–12
function of, 10

prompt command, 42
property, 39

in CSS declarations, 93
public dashboard, 53

creating your own, 67–68
push() array method, 178,

185–186, 220

JavaScript For Kids For Dummies

367

Q
quotes (quotation marks)

Double Quotes within Single
Quotes, 29

escaping, 27–29
inside a string, 27
single, 28–29
types of, 28–29
use of, 20

R
radio buttons, Super-Calculator, 139
random weather forecasting,

299–308
id and class attributes, 305–307
Listing 17-5 The Finished JavaScript

Code, 303–304
Math.random() function, 299–301
styling the app, 307–308
writing the app, 301–303

rectangles, elements in an HTML
document as, 98

remainder (modulo operation), 143,
144

replaceButton variable, 163
Replace It button, 155–157, 165
reserved words, 35
resetForm() function, 314, 341, 344,

345
resetInput() function, 222–224
resetting the program, Lemonade

Stand game, 344–345

resizing elements with CSS, 98–101
responding to input, 44–46
responsive design, 98–99
return statement, 195
return value, 195

defined, 19
reverse() array method,

178, 186
robotPart variable, 116
rules, 25–27

S
scientific notation, 144–145
selecting an element with

getElementById, 84
selectors

class, 92
CSS, 91–93
CSS rule, 91
element, 91
ID, 92–93

semicolon (;)
in CSS declarations, 93
to separate statements, 25, 31

setDate() method, 260
setDay() method, 260
setFullYear() method, 260
setHours() method, 260
setInterval command, 116, 117, 203
setMilliseconds() method, 260
setMonth() method, 260
setSeconds() method, 260
setter methods, 260

 Index

JavaScript For Kids For Dummies 368
setTime() method, 260
shift() array method, 178, 187
ShinyText, 13
single-line comments, 32
slice() array method, 178, 188
software, defined, 8
sort() array method, 178, 188–189
spaces, in strings, 39
spacing, 25
 element, 164
speaksJavaScript variable, 238
speedUp() function, 202
spelling, 25, 29
splice() array method, 178, 189
src attribute, 82
statements

curly brackets for, 30
defined, 24
example of, 24–25
indenting, 31
semicolon (;) for marking the end

of, 31
semicolon used to separate, 25
writing, 125

stopTrain() function, 204
storyDiv variable, 164
<.>storyPart selector, 276
strict equality operator (===),

147, 234
strict inequality operator (!==),

148–149
string data type, 38–40
strings

length of, 38
text in, 27–29

 element, 79

Super-Calculator
comparison operators, 145–150
forking, 138
introduction to, 137
name of, 138
strings and arithmetic operators,

141–145
using, 139–141

switches, overview, 9
switch statements, 252–266

branching, 267
defined, 252
syntax for, 253
writing, 253–255

syntax, 22–32
comments, 31–32
definition of, 22
following rules, 25–27
making a statement, 24–25
text in code, 29–30
text in strings, 27–29
white space, 30–31

syntax error, defined, 20

T
tags

beginning, 73
ending, 73
HTML, 61, 72
order in which tags are opened and

closed, 75
tempToday() variable, 303
text

in code, 29–30
in strings, 27–29

 Index 369
text sizes, specifying, 94
theEnd() function, 290–291
theStory variable, 164
TidyUp button, 165, 211
timerDelay, 62, 63
toFixed() method, 316
top variable, 116, 117
toString() array method,

178, 180–181
trainPosition variable, 203–204
trainSpeed variable, 202–203
transistors, in general, 9
Twitter, sharing your programs

on, 65
type conversion, 146–147
typeface, changing, 160
typeof command, 129–130

U
 element, 76, 79
unordered lists, 76
unshift() array method,

178, 187
updateList function, 86, 87

V
valueOf() array method, 180–181
values

of array elements, 176
changing, 176–177

in CSS declarations, 93
variable declarations, 34

variables
creating, 34–35
definition of, 34
global, 278

Lemonade Stand game, 335
Martian Rescue! game, 278
Wish List program, 214–215

inside arrays, 176
local, 214
naming, 34–35
storing data in, 36–38
without operators, 237–238

var keyword, 34
<video> tag, 73

W
weather, generating, Lemonade

Stand game, 337–341
weather forecast app

id and class attributes, 305–307
Listing 17-5 The Finished JavaScript

Code, 303–304
Math.random() function, 299–301
styling the app, 307–308
writing the app, 301–303

weather forecasts, Lemonade Stand
game, 327

weatherToday() variable, 302
web application (near web app),

definition of, 51
web browsers

events in, 111–112
overview, 14–16

web hosting, 318–325

JavaScript For Kids For Dummies 370
web pages

basic structure of, 75–76
body element, 76
creating your first, 76–78
as documents, 47
head element, 75
h1 element, 76
li element, 76
ol element, 76

websites, overview, 51
while loops

example of, 310
introduction to, 309
Lunch Game, 312–317
writing, 310–311

white space, 30–31
Wish List program, 206–229

browser’s Print dialog box, 227–228
enhancing the Wish List, 228–229
Forking the code, 208–209
functions

addTheThing(), 216, 222
addToTheList(), 216, 219–222
printView(), 217–218, 224, 226
resetInput(), 222–224

HTML for, 210–212
introduction to, 207–208
JavaScript code for, 212–229

declaring global variables, 214–215
event listeners, 212–214

running with incomplete
functions, 217

viewing the finished program,
207–208

women programmers, 8
Word Replacement Game, 153–170

button area, 156
creating a story for, 154
creating the game, 154–160

writing the HTML, 156
finishing the program, 166–170
JavaScript code, 163–165
question area, 156
story area, 157
styling, 160–163

words, reserved, 35
writing statements, 125

X
x10Hosting, 319–321

Y
youShould variable, 263

Z
zero-based numbering, in general, 40

About the Authors
Chris Minnick: Chris is a JavaScript superhero who is
known for being able to solve any problem. He enjoys
swimming, writing, and playing guitar.

Eva Holland: Eva’s superpower is her ability to get things
done. She is known throughout the land as the Facilitator.
She enjoys dancing, writing, and dressing up for parties.

Dedication
This book is dedicated to kids from 0 to 1100100.

Authors’ Acknowledgments
We’d like to give special thanks to everyone who advised us and
helped with testing and suggestions, including: Camille McCue, Ivy
Jackson, Beth Burkhart, Marek Belski, Stephen Tow, Carole Jelen,
our readers and students, our families and friends, our social
media followers, our awesome team at Wiley, and kids everywhere
who do cool things and inspire us to keep learning.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Camille McCue

Project Coordinator: Siddique Shaik

Cover Image: © Wiley

http://www.dummies.com

http://www.dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used In This Book
	Beyond the Book
	Where to Go from Here

	Part I What Is JavaScript? Alert! JavaScript Is Awesome!
	Chapter 1 Programming the Web
	What Is Programming?
	Talking to Computers
	Choosing a Language
	What Is JavaScript?
	Get Your Browser Ready
	Opening the Web Developer Tools
	Introducing the JavaScript Console
	Running Your First JavaScript Commands
	Having Fun with Math

	Chapter 2 Understanding Syntax
	Saying Precisely What You Mean
	Making a Statement
	Following the Rules

	Chapter 3 Giving and Receiving Data
	Mastering Variables
	Understanding Data Types
	Prompting the User for Input
	Responding to Input
	Combining Input and Output

	Chapter 4 Fiddling with Web Applications
	Introducing JSFiddle
	Creating a JSFiddle Account
	Sharing Your Fiddle
	Saving Your App

	Part II Animating the Web
	Chapter 5 JavaScript and HTML
	Writing HTML
	Knowing Your HTML Elements
	Adding Attributes to Elements
	Changing HTML with JavaScript

	Chapter 6 JavaScript and CSS
	Meet Douglas the JavaScript Robot
	CSS Basics
	CSS Properties Give You Style
	Customize Your Own JavaScript Robot!

	Chapter 7 Building an Animated Robot
	Changing CSS with JavaScript
	Make Douglas Dance!

	Part III Getting Operations
	Chapter 8 Building Your Dream Car with Operands
	Knowing Your Operands
	Working with Objects
	Configuring Your Dream Car

	Chapter 9 Putting It Together with Operators
	Introducing the Super‐Calculator
	Super‐Calculator Tricks

	Chapter 10 Creating Your Own JavaScript Word Game
	Creating a Variable Story
	Creating the Word Replacement Game

	Part IV Arrays and Functions
	Chapter 11 Creating and Changing Arrays
	What Are Arrays?
	Creating and Accessing Arrays
	Changing Array Element Values
	Working with Array Methods
	Learning the Ways of Arrays

	Chapter 12 Making It Functional
	Understanding Functions
	Knowing What Functions Are Made Of
	Building Function Junction

	Chapter 13 Creating a Wish List Program
	Introducing the Wish List Program
	Forking the Code
	Writing the HTML
	Writing the JavaScript Code

	 Part V Freedom of Choice
	Chapter 14 Making Decisions with the If...Else Statement
	Boolean Logic
	Introducing if...else Statements
	Combining Comparisons with Logical Operators
	Freshening Up the JavaScript Pizzeria

	Chapter 15 Doing Different Things with Switch
	Writing a Switch
	Building the Activity‐of‐the‐Day Calendar

	Chapter 16 Choose Your Own Adventure
	Planning the Story
	Playing the Game
	Forking the Code
	Tiptoeing through the HTML and CSS
	Writing the Martian Rescue! JavaScript

	Part VI Loops
	Chapter 17 What’s This Loop For?
	Introducing the for Loop
	Random Weather Forecasting

	Chapter 18 Using While Loops
	Writing a while Loop
	Coding the Lunch Game
	Moving to Your Own Website

	Chapter 19 Building a Lemonade Stand
	Playing the Game
	A Lesson in Business
	Building the Game
	Improving the Lemonade Game

	Index
	EULA

HOR—
JavaScript

