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Introduction

Geometry is a subject full of mathematical richness and beauty. The ancient 
Greeks were into it big-time, and it’s been a mainstay in secondary educa-
tion for centuries. Today, no education is complete without at least some 

familiarity with the fundamental principles of geometry.

But geometry is also a subject that bewilders many students because it’s so unlike 
the math that they’ve done before. Geometry requires you to use deductive logic 
in formal proofs. This process involves a special type of verbal and mathematical 
reasoning that’s new to many students. Seeing where to go next in a proof — or 
even where to start — can be challenging. The subject also involves working with 
two- and three-dimensional shapes: knowing their properties, finding their areas 
and volumes, and picturing what they would look like when they’re moved around. 
This spatial reasoning element of geometry is another thing that makes it differ-
ent and challenging.

Geometry For Dummies, 3rd Edition, can be a big help to you if you’ve hit the geom-
etry wall. Or if you’re a first-time student of geometry, it can prevent you from 
hitting the wall in the first place. When the world of geometry opens up to you and 
things start to click, you may come to really appreciate this topic, which has fas-
cinated people for millennia — and which continues to draw people to careers in 
art, engineering, architecture, city planning, photography, and computer anima-
tion, among others. Oh boy, I bet you can hardly wait to get started!

About This Book
Geometry For Dummies, 3rd Edition, covers all the principles and formulas you need 
to analyze two- and three-dimensional shapes, and it gives you the skills and 
strategies you need to write geometry proofs. These strategies can make all the 
difference in the world when it comes to constructing the somewhat peculiar type 
of logical argument required for proofs. The non-proof parts of the book contain 
helpful formulas and tips that you can use anytime you need to shape up your 
knowledge of shapes.

My approach throughout is to explain geometry in plain English with a minimum 
of technical jargon. Plain English suffices for geometry because its principles, 
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for  the most part, are accessible with your common sense. I see no reason to 
obscure geometry concepts behind a lot of fancy-pants mathematical mumbo-
jumbo. I prefer a street-smart approach.

This book, like all For Dummies books, is a reference, not a tutorial. The basic idea 
is that the chapters stand on their own as much as possible. So you don’t have to 
read this book cover to cover — although, of course, you might want to.

Conventions Used in This Book
Geometry For Dummies, 3rd Edition, follows certain conventions that keep the text 
consistent and oh-so-easy to follow:

 » Variables are in italics.

 » Important math terms are often in italics and are defined when necessary. 
Italics are also sometimes used for emphasis.

 » Important terms may be bolded when they appear as keywords within a 
bulleted list. I also use bold for the instructions in many-step processes.

 » As in most geometry books, figures are not necessarily drawn to scale —  
though most of them are.

 » I give you game plans for many of the geometry proofs in the book. A game 
plan is not part of the formal solution to a proof; it’s just my way of showing 
you how to think through a proof. When I don’t give you a game plan, you may 
want to try to come up with one of your own.

What You’re Not to Read
Focusing on the why in addition to the how-to can be a great aid to a solid under-
standing of geometry — or any math topic. With that in mind, I’ve put a lot of 
effort into discussing the underlying logic of many of the ideas in this book. 
I strongly recommend that you read these discussions, but if you want to cut to 
the chase, you can get by with reading only the example problems, the step-by- 
step solutions, and the definitions, theorems, tips, and warnings next to the icons.

I find the gray sidebars interesting and entertaining — big surprise, I wrote them! 
But you can skip them without missing any essential geometry. And no, you won’t 
be tested on that stuff.
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Foolish Assumptions
I may be going out on a limb, but as I wrote this book, here’s what I assumed 
about you:

 » You’re a high school student (or perhaps a junior high student) currently 
taking a standard high school–level geometry course.

 » You’re a parent of a geometry student, and you’d like to be able to explain the 
fundamentals of geometry so you can help your child understand his or her 
homework and prepare for quizzes and tests.

 » You’re anyone who wants anything from a quick peek at geometry to an 
in-depth study of the subject. You want to refresh your recollection of the 
geometry you studied years ago or want to explore geometry for the 
first time.

 » You remember some basic algebra — you know, all those rules for dealing 
with x’s and y’s. The good news is that you need very little algebra for doing 
geometry — but you do need some. In the problems that do involve algebra, 
I try to lay out all the solutions step by step, which should provide you with 
some review of simple algebra. If your algebra knowledge has gone com-
pletely cold, however, you may need to do a little catching up — but I wouldn’t 
sweat it.

 » You’re willing to do a little work. (Work? Egad!) As unpopular as the notion may 
be, understanding geometry does require some effort from time to time. I’ve 
tried to make this material as accessible as possible, but it is math after all. 
You can’t learn geometry by listening to a book-on-tape while lying on the 
beach. (But if you are at the beach, you can hone your geometry skills by 
estimating how far away the horizon is — see Chapter 22 for details.)

Icons Used in This Book
The following icons can help you quickly spot important information:

Next to this icon are theorems and postulates (mathematical truths), definitions 
of geometry terms, explanations of geometry principles, and a few other things 
you should remember as you work through the book.

This icon highlights shortcuts, memory devices, strategies, and so on.
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Ignore these icons, and you may end up doing lots of extra work or getting the 
wrong answer or both.

Beyond the Book
This book provides you with quite a bit of geometry instruction and practice. But 
if you need more help, I encourage you to check out additional resources available 
to you online. You can access a free Cheat Sheet by simply going to www.dummies.
com and entering “Geometry For Dummies Cheat Sheet” in the Search box. It’s a 
handy resource to keep on your computer, tablet, or smartphone.

Where to Go from Here
If you’re a geometry beginner, you should probably start with Chapter 1 and work 
your way through the book in order; but if you already know a fair amount of the 
subject, feel free to skip around. For instance, if you need to know about quadri-
laterals, check out Chapter 10. Or if you already have a good handle on geometry 
proof basics, you may want to dive into the more advanced proofs in Chapter 9.

You can also go to the excellent companion to this book, Geometry Workbook For 
Dummies, to do some practice problems.

And from there, naturally, you can go

 » To the head of the class

 » To Go to collect $200

 » To chill out

 » To explore strange new worlds, to seek out new life and new civilizations, to 
boldly go where no man (or woman) has gone before

If you’re still reading this, what are you waiting for? Go take your first steps into 
the wonderful world of geometry!

http://www.dummies.com
http://www.dummies.com


1Getting Started 
with Geometry 
Basics



IN THIS PART . . .

Discover why you should care about geometry.

Understand lines, points, angles, planes, and other 
geometry fundamentals.

Measure and work with segments and angles.
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IN THIS CHAPTER

Surveying the geometric landscape: 
Shapes and proofs

Finding out “What is the point of 
geometry, anyway?”

Getting psyched to kick some serious 
geometry butt

Introducing 
Geometry

Studying geometry is sort of a Dr. Jekyll-and-Mr. Hyde thing. You have the 
ordinary, everyday geometry of shapes (the Dr. Jekyll part) and the strange 
world of geometry proofs (the Mr. Hyde part).

Every day, you see various shapes all around you (triangles, rectangles, boxes, 
circles, balls, and so on), and you’re probably already familiar with some of their 
properties: area, perimeter, and volume, for example. In this book, you discover 
much more about these basic properties and then explore more-advanced geo-
metric ideas about shapes.

Geometry proofs are an entirely different sort of animal. They involve shapes, but 
instead of doing something straightforward like calculating the area of a shape, 
you have to come up with an airtight mathematical argument that proves some-
thing about a shape. This process requires not only mathematical skills but verbal 
skills and logical deduction skills as well, and for this reason, proofs trip up many, 
many students. If you’re one of these people and have already started singing the 
geometry-proof blues, you might even describe proofs — like Mr. Hyde — as 
monstrous. But I’m confident that, with the help of this book, you’ll have no 
trouble taming them.

Chapter 1
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This chapter is your gateway into the sensational, spectacular, and super-duper 
(but sometimes somewhat stupefying) subject of this book: geometry. If you’re 
tempted to ask, “Why should I care about geometry?” this chapter will give you 
the answer.

Studying the Geometry of Shapes
Have you ever reflected on the fact that you’re literally surrounded by shapes? 
Look around. The rays of the sun are — what else? — rays. The book in your hands 
has a shape, every table and chair has a shape, every wall has an area, and every 
container has a shape and a volume; most picture frames are rectangles, CDs and 
DVDs are circles, soup cans are cylinders, and so on and so on. Can you think of 
any solid thing that doesn’t have a shape? This section gives you a brief introduc-
tion to these one-, two-, and three-dimensional shapes that are all-pervading, 
omnipresent, and ubiquitous — not to mention all around you.

One-dimensional shapes
There aren’t many shapes you can make if you’re limited to one dimension. You’ve 
got your lines, your segments, and your rays. That’s about it. But it doesn’t follow 
that having only one dimension makes these things unimportant — not by any 
stretch. Without these one-dimensional objects, there’d be no two-dimensional 
shapes; and without 2-D shapes, you can’t have 3-D shapes. Think about it: 
2-D squares are made up of four 1-D segments, and 3-D cubes are made up of 
six 2-D squares. And it’d be very difficult to do much mathematics without the 
simple 1-D number line or without the more sophisticated 2-D coordinate system, 
which needs 1-D lines for its x- and y-axes. (I cover lines, segments, and rays in 
 Chapter 2; Chapter 18 discusses the coordinate plane.)

Two-dimensional shapes
As you probably know, two-dimensional shapes are flat things like triangles, 
 circles, squares, rectangles, and pentagons. The two most common characteristics 
you study about 2-D shapes are their area and perimeter. These geometric 
 concepts come up in countless situations in the real world. You use 2-D geometry, 
for example, when figuring the acreage of a plot of land, the number of square feet 
in a home, the size and shape of cloth needed when making curtains or clothing, 
the length of a running track, the dimensions of a picture frame, and so on. 
The formulas for calculating the area and perimeter of 2-D shapes are covered in 
Parts 3 through 5.
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HISTORICAL HIGHLIGHTS IN THE 
STUDY OF SHAPES
The study of geometry has impacted architecture, engineering, astronomy, physics, 
medicine, and warfare, among other fields, in countless ways for well over 5,000 years. 
I doubt anyone will ever be able to put a date on the discovery of the simple formula for 
the area of a rectangle Area length width , but it likely predates writing and goes 
back to some of the earliest farmers. Some of the first known writings from 
Mesopotamia (in about 3500 B.C.) deal with the area of fields and property. And I’d bet 
that even pre-Mesopotamian farmers knew that if one farmer planted an area three 
times as long and twice as wide as another farmer, then the bigger plot would be 3 2, 
or 6 times as large as the smaller one.

The architects of the pyramids at Giza (built around 2500 B.C.) knew how to construct 
right angles using a 3-4-5 triangle (one of the right triangles I discuss in Chapter 8). Right 
angles are necessary for the corners of the pyramid’s square base, among other things. 
And of course, you’ve probably heard of Pythagoras (circa 570–500 B.C.) and the famous 
right-triangle theorem named after him (see Chapter 8). Archimedes (287–212 B.C.) 
used geometry to invent the pulley. He developed a system of compound pulleys that 
could lift an entire warship filled with men (for more of Archimedes’s accomplishments, 
see Chapter 22). The Chinese knew how to calculate the area and volume of many dif-
ferent geometric shapes and how to construct a right triangle by 100 B.C.

In more recent times, Galileo Galilei (1564–1642) discovered the equation for the motion 
of a projectile (see Chapter 22) and designed and built the best telescope of his day. 
Johannes Kepler (1571–1630) measured the area of sections of the elliptical orbits of the 
planets as they orbit the sun. René Descartes (1596–1650) is credited with inventing 
coordinate geometry, the basis for most mathematical graphing (see Chapter 18). Isaac 
Newton (1642–1727) used geometrical methods in his Principia Mathematica, the 
famous book in which he set out the principle of universal gravitation.

Closer to home, Ben Franklin (1706–1790) used geometry to study meteorology and 
ocean currents. George Washington (1732–1799) used trigonometry (the advanced 
study of triangles) while working as a surveyor before he became a soldier. Last but cer-
tainly not least, Albert Einstein discovered one of the most bizarre geometry rules of all: 
that gravity warps the universe. One consequence of this is that if you were to draw a 
giant triangle around the sun, the sum of its angles would actually be a little larger than 
180 . This contradicts the 180  rule for triangles (see Chapter 7), which works until you 
get to an astronomical scale. The list of highlights goes on and on.
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I devote many chapters in this book to triangles and quadrilaterals (shapes with 
four sides); I give less space to shapes that have more sides, like pentagons and 
hexagons. Shapes of any number of straight sides, called polygons, have more-
advanced features such as diagonals, apothems, and exterior angles, which you 
explore in Part 4.

You may be familiar with some shapes that have curved sides, such as circles, 
ellipses, and parabolas. The circle is the only curved 2-D shape covered in this 
book. In Part 5, you investigate all sorts of interesting circle properties involving 
diameters, radii, chords, tangent lines, and so on.

Three-dimensional shapes
I cover three-dimensional shapes in Part 6. You work with prisms (a box is one 
example), cylinders, pyramids, cones, and spheres. The two major characteristics of 
these 3-D shapes, which you study in Chapter 17, are their surface area and volume.

Three-dimensional concepts like volume and surface area come up frequently in 
the real world; examples include the volume of water in a fish tank or backyard 
pool. The amount of wrapping paper you need to wrap a gift box depends on its 
surface area. And if you wanted to calculate the surface area and volume of the 
Great Pyramid of Giza — you’ve been dying to do this, right? — you couldn’t do it 
without 3-D geometry.

Here are a couple of ideas about how the three dimensions are interrelated. Two-
dimensional shapes are enclosed by their sides, which are 1-D segments; 3-D 
shapes are enclosed by their faces, which are 2-D polygons. And here’s a real-
world example of the relationship between 2-D area and 3-D volume: A gallon of 
paint (a 3-D volume quantity) can cover a certain number of square feet of area on 
a wall (a 2-D area quantity). (Well, okay, I have to admit it — I’m playing a bit fast 
and loose with my dimensions here. The paint on the wall is actually a 3-D shape. 
There’s the length and width of the wall, and the third dimension is the thickness 
of the layer of paint. If you multiply these three dimensions together, you get the 
volume of the paint.)

Getting Acquainted with Geometry Proofs
Geometry proofs are an oddity in the mathematical landscape, and just about the 
only place you find geometry proofs is in a geometry course. If you’re in a course 
right now and you’re wondering what’s the point of studying something you’ll 
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never use again, I get to that in a minute in the section “When Am I Ever Going to 
Use This?” For now, I just want to give you a very brief description of what a 
geometry proof is.

A geometry proof — like any mathematical proof — is an argument that begins 
with known facts, proceeds from there through a series of logical deductions, and 
ends with the thing you’re trying to prove.

Mathematicians have been writing proofs — in geometry and all other areas of 
math — for over 2,000 years. (See the sidebar about Euclid and the history of 
geometry proofs.) The main job of a present-day mathematician is proving things 
by writing formal proofs. This is how the field of mathematics progresses: As 
more and more ideas are proved, the body of mathematical knowledge grows. 
Proofs have always played, and still play, a significant role in mathematics. And 
that’s one of the reasons you’re studying them. Part 2 delves into all the details on 
proofs; in the sections that follow, I get you started in the right direction.

Easing into proofs with 
an everyday example
You probably never realized it, but sometimes when you think through a situation 
in your day-to-day life, you use the same type of deductive logic that’s used in 
geometry proofs. Although the topics are different, the basic nature of the argu-
ment is the same.

Here’s an example of real-life logic. Say you’re at a party at Sandra’s place. You 
have a crush on Sandra, but she’s been dating Johnny for a few months. You look 
around at the partygoers and notice Johnny talking with Judy, and a little later you 
see them step outside for a few minutes. When they come back inside, Judy’s 
wearing Johnny’s ring. You weren’t born yesterday, so you put two and two 
together and realize that Sandra’s relationship with Johnny is in trouble and, in 
fact, may end any minute. You glance over in Sandra’s direction and see her leav-
ing the room with tears in her eyes. When she comes back, you figure it might not 
be a bad idea to go over and talk with her.

(By the way, this story about a party gone bad is based on Lesley Gore’s No. 1 hit 
from the ’60s, “It’s My Party.” The sequel song, also a hit, “Judy’s Turn to Cry,” 
relates how Sandra got back at Judy. Check out the lyrics online.)

Now, granted, this party scenario may not seem like it involves a deductive argu-
ment. Deductive arguments tend to contain many steps or a chain of logic like, 
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“If A, then B; and if B, then C; if C, then D; and so on.” The party fiasco may not 
seem like this at all because you’d probably see it as a single incident. You see Judy 
come inside wearing Johnny’s ring, you glance at Sandra and see that she’s upset, 
and the whole scenario is clear to you in an instant. It’s all obvious — no logical 
deduction seems necessary.

Turning everyday logic into a proof
Imagine that you had to explain your entire thought process about the party situ-
ation to someone with absolutely no knowledge of how people usually behave. For 
instance, imagine that you had to explain your thinking to a hypothetical Martian 
who knows nothing about our Earth ways. In this case, you would need to walk 
him through your reasoning step by step.

Here’s how your argument might go. Note that each statement comes with the 
reasoning in parentheses:

1. Sandra and Johnny are going out (this is a given fact).

2. Johnny and Judy go outside for a few minutes (also given).

3. When Judy returns, she has a new ring on her finger (a third given).

4. Therefore, she’s wearing Johnny’s ring (much more probable than, say, that she 
found a ring on the ground outside).

5. Therefore, Judy is going out with Johnny (because when a boy gives a girl his 
ring, it means they’re going out).

6. Therefore, Sandra and Johnny will break up soon (because a girl will not 
continue to go out with a guy who’s just given another girl his ring).

7. Therefore, Sandra will soon be available (because that’s what happens after 
someone breaks up).

8. Therefore, I should go over and talk with her (duh).

This eight-step argument shows you that there really is a chain of logical deduc-
tions going on beneath the surface, even though in real life your reasoning and 
conclusions about Sandra would come to you in an instant. And the argument 
gives you a little taste for the type of step-by-step reasoning you use in geometry 
proofs. You see your first geometry proof in the next section.
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Sampling a simple geometrical proof
Geometry proofs are like the party argument in the preceding section, only with a 
lot less drama. They follow the same type of series of intermediate conclusions 
that lead to the final conclusion: Beginning with some given facts, say A and B, 
you go on to say therefore, C; then therefore, D; then therefore, E; and so on till you 
get to your final conclusion. Here’s a very simple example using the line segments 
in Figure 1-1.

For this proof, you’re told that segment PS  is congruent to (the same length as) 
segment WZ , that PQ is congruent to WX , and that QR is congruent to XY . (By the 
way, instead of saying is congruent to all the time, you can just use the symbol  to 
mean the same thing.) You have to prove that RS YZ . Now, you may be thinking, 
“That’s obvious — if PS  is the same length as WZ  and both segments contain the 
equal short pieces and the equal medium pieces, then the longer third pieces have 
to be equal as well.” And of course, you’d be right. But that’s not how the proof 
game is played. You have to spell out every little step in your thinking so your 
argument doesn’t have any gaps. Here’s the whole chain of logical deductions:

1. PS WZ  (this is given).

2. PQ WX  and QR XY  (these facts are also given).

3. Therefore, PR WY  (because if you add equal things to equal things, you get 
equal totals).

4. Therefore, RS YZ  (because if you start with equal segments, the whole 
segments PS  and WZ , and take away equal parts of them, PR and WY , the 
parts that are left must be equal).

In formal proofs, you write your statements (like PR WY  from Step 3) in one 
column and your justifications for those statements in another column. Chapter 4 
shows you the setup.

P Q R S

W X Y Z

FIGURE 1-1:  
PS  and WZ , 

each made up of 
three pieces. 

© John Wiley & Sons, Inc.
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When Am I Ever Going to Use This?
You’ll likely have plenty of opportunities to use your knowledge about the geom-
etry of shapes. And what about geometry proofs? Not so much. Read on for details.

When you’ll use your knowledge of shapes
Shapes are everywhere, so every educated person should have a working knowl-
edge of shapes and their properties. The geometry of shapes comes up often in 
daily life, particularly with measurements.

In day-to-day life, if you have to buy carpeting or fertilizer or grass seed for your 
lawn, you should know something about area. You might want to understand the 
measurements in recipes or on food labels, or you may want to help a child with 
an art or science project that involves geometry. You certainly need to understand 
something about geometry to build some shelves or a backyard deck. And after 
finishing your work, you might be hungry — a grasp of how area works can come 
in handy when you’re ordering pizza: a 20-inch pizza is four, not two, times as 
big as a 10-incher, and a 14-inch pizza is twice as big as a 10-incher. (Check out 
Chapter 15 to see why this is.)

HATE PROOFS? BLAME EUCLID.
Euclid (circa 385–275 B.C.) is usually credited with getting the ball rolling on geometry 
proofs. (If you’re having trouble with proofs, now you know who to blame.) His 
approach was to begin with a few undefined terms such as point and line and then to 
build from there, carefully defining other terms like segment and angle. He also realized 
that he’d need to begin with some unproved principles (called postulates) that he’d just 
have to assume were true.

He started with ten postulates, such as “a straight line segment can be drawn by connect-
ing any two points” and “two things that each equal a third thing are equal to one 
another.” After setting down the undefined terms, the definitions, and the postulates, 
his real work began. Using these three categories of things, he proved his first theorem 
(a proven geometric principle), which was the side-angle-side method of proving triangles 
congruent (see Chapter 9). And then he proved another theorem and another and so on.

Once a theorem had been proved, it could then be used (along with the undefined 
terms, definitions, and postulates) to prove other theorems. If you’re working on proofs 
in a standard high school geometry course, you’re walking in the footsteps of Euclid, 
one of the giants in the history of mathematics — lucky you!
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When you’ll use your knowledge of proofs
Will you ever use your knowledge of geometry proofs? In this section, I give you 
two answers to this question: a politically correct one and a politically incorrect 
one. Take your pick.

First, the politically correct answer (which is also actually correct). Granted, it’s 
extremely unlikely that you’ll ever have occasion to do a single geometry proof 
outside of a high school math course (college math majors are about the only 
exception). However, doing geometry proofs teaches you important lessons that 
you can apply to non-mathematical arguments. Among other things, proofs teach 
you the following:

 » Not to assume things are true just because they seem true at first glance

 » To very carefully explain each step in an argument even if you think it should 
be obvious to everyone

 » To search for holes in your arguments

 » Not to jump to conclusions

And in general, proofs teach you to be disciplined and rigorous in your thinking 
and in how you communicate your thoughts.

CAREERS THAT USE GEOMETRY
Here’s a quick alphabetical tour of careers that use geometry. Artists use geometry to 
measure canvases, make frames, and design sculptures. Builders use it in just about 
everything they do; ditto for carpenters. For dentists, the shape of teeth, cavities, and 
fillings is one big geometry problem. Dairy farmers use geometry when calculating the 
volume of milk output in gallons. Diamond cutters use geometry every time they cut a 
stone.

Eyeglass manufacturers use geometry in countless ways whenever they use the science 
of optics. Fighter pilots (or quarterbacks or anyone else who has to aim something at a 
moving target) have to understand angles, distance, trajectory, and so on. Grass-seed 
sellers have to know how much seed customers need to use per square yard or per 
acre. Helicopter pilots use geometry (actually, their computerized instruments do the 
work for them) for all calculations that affect taking off and landing, turning, wind speed, 
lift, drag, acceleration, and the like. Instrument makers have to use geometry when they 
make trumpets, pianos, violins — you name it. And the list goes on and on . . .



16      PART 1  Getting Started with Geometry Basics

If you don’t buy that PC stuff, I’m sure you’ll understand this politically incorrect 
answer: Okay, so you’re never going to use geometry proofs. But you do want to 
get a decent grade in geometry, right? So you might as well pay attention in class 
(what else is there to do, anyway?), do your homework, and use the hints, tips, and 
strategies I give you in this book. They’ll make your life much easier. Promise.

Why You Won’t Have Any Trouble  
with Geometry

Geometry, especially proofs, can be difficult. Mathwise, it’s foreign territory with 
some rocky terrain. But it’s far from impossible, and you can do several things to 
make your geometry experience smooth sailing:

 » Powering through proofs: If you get stuck on a proof, check out the helpful 
tips and warnings that I give you throughout each chapter. You may also want 
to look at Chapter 21 to make sure you keep the ten most important ideas for 
proofs fresh in your mind. Finally, you can go to Chapter 6 to see how to 
reason your way through a long, complicated proof.

 » Figuring out formulas: If you can’t figure out a problem that uses a geometry 
formula, you can look at the online Cheat Sheet to make sure that you have 
the formula right. Simply go to www.dummies.com and enter “Geometry For 
Dummies Cheat Sheet” in the Search box.

 » Sticking it out: My main piece of advice to you is to never give up on a 
problem. The greater the number of tricky problems that you finally beat, the 
more experience you gain to help you beat the next one. After you take in all 
my expert advice — no brag, just fact — you should have all the tools you 
need to face down whatever your geometry teacher or math-crazy friends can 
throw at you.
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IN THIS CHAPTER

Examining the basic components of 
complex shapes

Understanding points, lines, rays, 
segments, angles, and planes

Pairing up with angle pairs

Building Your 
Geometric 
Foundation

In this chapter, you go over the groundwork that gets you geared up for some gru-
eling and gut-wrenching geometry. (That’s some carefully crafted consonance 
for you. And no, the rest of the geometry in this book isn’t really grueling or gut- 

wrenching — I just needed some “g” words.) These building blocks also work for 
merely-moderately-challenging geometry and do-it-in-your-sleep geometry.

All kidding aside, this chapter should be pretty easy, but don’t skip it — unless 
you’re already a geometry genius — because many of the ideas you see here are 
crucial to understanding the rest of this book.

Getting Down with Definitions
The study of geometry begins with the definitions of the five simplest geometric 
objects: point, line, segment, ray, and angle. And I throw in two extra definitions 
for you (plane and 3-D space) for no extra charge. Collectively, these terms take 
you from no dimensions up to the third dimension.

Chapter 2
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Here are the definitions of segment, ray, angle, plane, and 3-D space and the 
 “undefinitions” of point and line (these two terms are technically undefinable — 
see the nearby sidebar for details):

 » Point: A point is like a dot except that it actually has no size at all; or you can 
say that it’s infinitely small (except that even saying infinitely small makes a 
point sound larger than it really is). Essentially, a point is zero-dimensional, 
with no height, length, or width, but you draw it as a dot, anyway. You name a 
point with a single uppercase letter, as with points A, D, and T in Figure 2-1.

 » Line: A line is like a thin, straight wire (although really it’s infinitely thin — or 
better yet, it has no width at all). Lines have length, so they’re one-dimensional.  
Remember that a line goes on forever in both directions, which is why you use 
the little double-headed arrow as in AB

� ���
 (read as line AB).

Check out Figure 2-1 again. Lines are usually named using any two points on 
the line, with the letters in any order. So MQ

� ����
 is the same line as QM

� ����
, MN
� ����

 is 
the same as NM

� ����
, and QN

� ���
 is the same as NQ

� ���
. Occasionally, lines are named 

with a single, italicized, lowercase letter, such as lines f and g.

 » Line segment (or just segment): A segment is a section of a line that has two 
endpoints. See Figure 2-1 yet again. If a segment goes from P to R, you call it 
segment PR and write it as PR. You can also switch the order of the letters and 
call it RP . Segments can also appear within lines, as in MN .

Note: A pair of letters without a bar over it means the length of a segment. 
For example, PR means the length of PR.

A

M
Q

N

T
f

g

B
P

R

D

FIGURE 2-1:  
Some points, 

lines, and 
segments. 

© John Wiley & Sons, Inc.
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 » Ray: A ray is a section of a line (kind of like half a line) that has one endpoint 
and goes on forever in the other direction. If its endpoint is point K and it goes 
through point S and then past it forever, you call the “half line” ray KS and 
write KS

� ���
. See Figure 2-2.

The first letter always indicates the ray’s endpoint. For instance, AB
� ���

 can also 
be called AC

� ���
 because either way, you start at A and go forever past B and C. 

BC
� ���

, however, is a different ray.

 » Angle: Two rays with the same endpoint form an angle. Each ray is a side of 
the angle, and the common endpoint is the angle’s vertex. You can name an 
angle using its vertex alone or three points (first, a point on one ray, then the 
vertex, and then a point on the other ray).

Check out Figure 2-3. Rays PQ
� ���

 and PR
� ���

 form the sides of an angle, with point P 
as the vertex. You can call the angle P, RPQ, or QPR. Angles can also be 
named with numbers, such as the angle on the right in the figure, which you 
can call 4. The number is just another way of naming the angle, and it has 
nothing to do with the size of the angle.

The angle on the right also illustrates the interior and exterior of an angle.

 » Plane: A plane is like a perfectly flat sheet of paper except that it has no 
thickness whatsoever and it goes on forever in all directions. You might say it’s 

K

S

A
B

CFIGURE 2-2:  
Catching  

a few rays. 
© John Wiley & Sons, Inc.

P
R

exterior
interior

4

Q

FIGURE 2-3:  
Some angles and 

their parts. 
© John Wiley & Sons, Inc.
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infinitely thin and has an infinite length and an infinite width. Because it has 
length and width but no height, it’s two-dimensional. Planes are named with a 
single, italicized, lowercase letter or sometimes with the name of a figure (a 
rectangle, for example) that lies in the plane. Figure 2-4 shows plane m, which 
goes out forever in four directions.

 » 3-D (three-dimensional) space: 3-D space is everywhere — all of space in 
every direction. First, picture an infinitely big map that goes forever to the 
north, south, east, and west. That’s a two-dimensional plane. Then, to get 3-D 
space from this map, add the third dimension by going up and down forever.

There’s no good way to draw 3-D space (Figure 2-4 shows my best try, but it’s 
not going to win any awards). Unlike a box, 3-D space has no shape and no 
borders.

Because 3-D space takes up all the space in the universe, it’s sort of the oppo-
site of a point, which takes up no space at all. But on the other hand, 3-D 
space is like a point in that both are difficult to define because both are 
 completely without features.

Here’s something a bit peculiar about the way objects are depicted in geometry 
diagrams: Even if lines, segments, rays, and so on don’t appear in a diagram, 
they’re still sort of there — as long as you’d know where to draw them. For exam-
ple, Figure 2-1 contains a segment, PD , that goes from P to D and has endpoints 
at P and D — even though you don’t see it. (I know that may seem a bit weird, but 
this idea is just one of the rules of the game. Don’t sweat it.)

m

FIGURE 2-4:  
A two-  

dimensional 
plane and 

three- 
dimensional 

space. 
© John Wiley & Sons, Inc.
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A Few Points on Points
There isn’t much that can be said about points. They have no features, and each 
one is the same as every other. Various groups of points, however, do merit an 
explanation:

 » Collinear points: See the word line in collinear? Collinear points are points 
that lie on a line. Any two points are always collinear because you can always 
connect them with a straight line. Three or more points can be collinear, but 
they don’t have to be. See Figure 2-5.

 » Non-collinear points: These points, like points X, Y, and Z in Figure 2-5, don’t 
all lie on the same line.

DEFINING THE UNDEFINABLE
Definitions typically use simpler terms to explain the meaning of more-complex ones. 
Consider, for example, the definition of the median of a triangle: “a segment from a 
vertex of a triangle to the midpoint of the opposite side.” You use the basic terms seg-
ment, vertex, triangle, midpoint, and side to define the new term, median. If you don’t 
know the meaning of, say, midpoint, you can look up its definition and find its meaning 
explained in terms of point, segment, and congruent. And then you can look up one of 
those terms if you have to, and so on.

But with the word point (and line), this strategy just doesn’t work. Try to define point 
without using the word point or a synonym of point in the definition. Any luck? I didn’t 
think so. You can’t do it. And using point or a synonym of point in its own definition is cir-
cular and therefore not valid — you can’t use a term in its own definition because to be 
able to understand the definition, you’d have to already know the meaning of the word 
you’re trying to figure out! That’s why some words, though they appear in your diction-
ary, are technically undefined in the world of math.

P
Q

R Y

Z
X

FIGURE 2-5:  
P, Q, and R are 
collinear; X, Y, 

and Z are 
non-collinear. 

© John Wiley & Sons, Inc.
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 » Coplanar points: A group of points that lie in the same plane are coplanar. 
Any two or three points are always coplanar. Four or more points might or 
might not be coplanar.

Look at Figure 2-6, which shows coplanar points A, B, C, and D. In the box on 
the right, there are many sets of coplanar points. Points P, Q, X, and W, for 
example, are coplanar; the plane that contains them is the left side of the box. 
Note that points Q, X, S, and Z are also coplanar even though the plane that 
contains them isn’t shown; it slices the box in half diagonally.

 » Non-coplanar points: A group of points that don’t all lie in the same plane 
are non-coplanar.

See Figure 2-6. Points P, Q, X, and Y are non-coplanar. The top of the box 
 contains Q, X, and Y, and the left side contains P, Q, and X, but no flat surface 
contains all four points.

Lines, Segments, and Rays Pointing 
Every Which Way

In this section, I describe different types of lines (or segments or rays) or pairs of 
lines (or segments or rays) based on the direction they’re pointing or how they 
relate to each other. People usually use the terms in the next two sections to 
describe lines, but you can use them for segments and rays as well.

Singling out horizontal and vertical lines
Giving the definitions of horizontal and vertical may seem a bit pointless. You 
probably already know what the terms mean, and the best way to describe them 
is to just show you a figure. But, hey, this is a math book, and math books are 

C
D

Q

X

W

P

R

S

Z

Y

BA
FIGURE 2-6:  

Coplanar and 
non-coplanar 

points. 
© John Wiley & Sons, Inc.
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supposed to define terms. Who am I to question this age-old tradition? So here are 
the definitions (also check out Figure 2-7):

 » Horizontal lines, segments, or rays: Horizontal lines, segments, and rays 
go straight across, left and right, not up or down at all — you know, like 
the horizon.

 » Vertical lines, segments, or rays: Lines or parts of a line that go straight up 
and down are vertical. (Rocket science this is not.)

Doubling up with pairs of lines
In this section, I give you five terms that describe pairs of lines. The first four are 
about coplanar lines — you use these terms a lot. The fifth term describes non-
coplanar lines. This term comes up only in 3-D problems, so you probably won’t 
have a chance to use it much.

Coplanar lines
I define coplanar points in a previous section — as points in the same plane — so I 
absolutely refuse to define coplanar lines. Well, okay, I suppose I don’t want to be 
turned in to the math-book-writers’ disciplinary committee, so here it is: Copla-
nar lines are lines in the same plane. Here are some ways coplanar lines may 
interact:

 » Parallel lines, segments, or rays: Lines that run in the same direction and 
never cross (like two railroad tracks) are called parallel. Segments and rays are 
parallel if the lines that contain them are parallel. If AB

� ���
 is parallel to CD

� ���
, you 

write AB CD
� ���
�
� ���

. See Figure 2-8.

VerticalHorizontal

FIGURE 2-7:  
Some horizontal 

and vertical lines, 
segments, 
and rays. 

© John Wiley & Sons, Inc.
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 » Intersecting lines, segments, or rays: Lines, rays, or segments that cross or 
touch are intersecting. The point where they cross or touch is called the point 
of intersection.

• Perpendicular lines, segments, or rays: Lines, segments, or rays that 
intersect at right angles ( 90  angles) are perpendicular. If PQ is perpen-
dicular to RS , you write PQ RS . See Figure 2-9. The little boxes in the 
corners of the angles indicate right angles. (You use the definition of 
perpendicular in proofs. See Chapter 4.)

• Oblique lines, segments, or rays: Lines or segments or rays that intersect 
at any angle other than 90  are called oblique. See Figure 2-9, which shows 
oblique lines and rays on the right.

FIGURE 2-8:  
Four pairs of 
parallel lines, 

segments, 
and rays — and 
never the twain 

shall meet. 
© John Wiley & Sons, Inc.

FIGURE 2-9:  
Perpendicular 

and oblique lines, 
rays, and 

segments. 
© John Wiley & Sons, Inc.
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Because lines extend forever, a pair of coplanar lines must be either parallel or 
intersecting. (However, this is not true for coplanar segments and rays. Segments 
and rays can be nonparallel and at the same time non-intersecting, because their 
endpoints allow them to stop short of crossing.)

Non-coplanar lines
In the preceding section, you can check out lines that lie in the same plane. Here, 
I discuss lines that aren’t in the same plane.

Skew lines, segments, or rays: Lines that don’t lie in the same plane are called 
skew lines — skew simply means non-coplanar. Or you can say that skew lines are 
lines that are neither parallel nor intersecting. See Figure  2-10. (You probably 
won’t ever hear anyone refer to skew segments or rays, but there’s no reason they 
can’t be skew. They’re skew if they’re non-coplanar.)

Here’s a good way to get a handle on skew lines. Take two pencils or pens, one in 
each hand. Hold them a few inches apart, both of them pointing away from you. 
Now, keep one where it is and point the other one up at the ceiling. That’s it. 
You’re holding skew lines.

Investigating the Plane Facts
Look! Up in the sky! It’s a bird! It’s a plane! It’s Superman! Wait . . . no, it’s just a 
plane. In this short section, you discover a couple of things about planes — the 
geometric kind, that is, not the flying kind. Unfortunately, the geometric kind of 
plane is much less interesting because there’s really only one thing to be said 
about how two planes interact: Either they cross each other, or they don’t. I wish 
I could make this more interesting or exciting, but that’s all there is to it.

FIGURE 2-10:  
Skew lines are 
non-coplanar. 

© John Wiley & Sons, Inc.



26      PART 1  Getting Started with Geometry Basics

Here are two no-brainer terms for a pair of planes (see Figure 2-11):

 » Parallel planes: Parallel planes are planes that never cross. The ceiling of a 
room (assuming it’s flat) and the floor are parallel planes (though true planes 
extend forever).

 » Intersecting planes: Hold onto your hat — intersecting planes are planes 
that cross, or intersect. When planes intersect, the place where they cross 
forms a line. The floor and a wall of a room are intersecting planes, and where 
the floor meets the wall is the line of intersection of the two planes.

Everybody’s Got an Angle
Angles are one of the basic building blocks of triangles and other polygons (seg-
ments are the other). You can see angles on virtually every page of any geometry 
book, so you gotta get up to speed about them — no ifs, ands, or buts. In the first 
part of this section, I give you five terms that describe single angles. In the follow-
ing part, I discuss four types of pairs of angles.

Goldilocks and the three angles: 
Small, large, and just “right”
Are these geometry puns fantastic or what? Tell me: Where else can you get so 
much fascinating math plus such incredibly good humor? As a matter of fact, 
I liked this pun so much that I decided to use it even though it’s not exactly accu-
rate. In this section, I give you five types of angles, not just three. But the first 
three are the main ones; the last two are a bit peculiar.

Parallel planes Intersecting planes

FIGURE 2-11:  
Parallel and 
intersecting 

planes. 
© John Wiley & Sons, Inc.
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Check out the following five angle definitions and see Figure 2-12 for the visual:

 » Acute angle: An acute angle is less than 90 . Think “a-cute little angle.” Acute 
angles are kind of like an alligator’s mouth not opened very wide.

 » Right angle: A right angle is a 90  angle. Right angles should be familiar to you 
from the corners of picture frames, tabletops, boxes, and books, the intersec-
tions of most roads, and all kinds of other things that show up in everyday life. 
The sides of a right angle are perpendicular (see the earlier “Coplanar lines” 
section).

 » Obtuse angle: An obtuse angle has a measure greater than 90 . These angles 
are more like pool chairs or beach chairs — they open pretty far, and they 
look like you could lean back in them. (More comfortable than an alligator’s 
mouth, right?)

 » Straight angle: A straight angle has a measure of 180 ; it looks just like a line 
with a point on it (seems kinda weird for an angle if you ask me).

 » Reflex angle: A reflex angle has a measure of more than 180 . Basically, a 
reflex angle is just the other side of an ordinary angle. For example, consider 
one of the angles in a triangle. Picture the large angle on the outside of the 
triangle that wraps around the corner — that’s what a reflex angle is.

Acute angle Right angle

Straight angleObtuse angle

Reex angle

FIGURE 2-12:  
Examining all the 

angles. 
© John Wiley & Sons, Inc.
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Angle pairs: Often joined at the hip
Unlike the solo angles in the preceding section, the angles here have to be in a 
relationship with another angle for these definitions to mean anything. Yeah, 
they’re a little needy. Adjacent angles and vertical angles always share a common 
vertex, so they’re literally joined at the hip. Complementary and supplementary 
angles can share a vertex, but they don’t have to. Here are the definitions:

 » Adjacent angles: Adjacent angles are neighboring angles that have the same 
vertex and that share a side; also, neither angle can be inside the other. I 
realize that’s quite a mouthful. This very simple idea is kind of a pain to define, 
so just check out Figure 2-13 — a picture’s worth a thousand words.

In the figure, BAC  and CAD are adjacent, as are 1 and 2. However, nei-
ther 1 nor 2 is adjacent to XYZ  because they’re both inside XYZ . None 
of the unnamed angles to the right are adjacent because they either don’t 
share a vertex or don’t share a side.

If you have adjacent angles, you can’t name any of the angles with a single 
letter. For example, you can’t call 1 or 2 (or XYZ , for that matter) Y  
because no one would know which one you mean. Instead, you have to refer 
to the angle in question with a number or with three letters.

A

C

DB

X

Z

1
2

Y

FIGURE 2-13:  
Adjacent and 
non-adjacent 

angles. 
© John Wiley & Sons, Inc.
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 » Complementary angles: Two angles that add up to 90  or a right angle are 
complementary. They can be adjacent angles but don’t have to be. In 
Figure 2-14, adjacent angles 1 and 2 are complementary because they 
make a right angle; P and Q are complementary because they add up to 
90 . (The definition of complementary is sometimes used in proofs. See 
Chapter 4.)

 » Supplementary angles: Two angles that add up to 180  or a straight angle 
are supplementary. They may or may not be adjacent angles. In Figure 2-15, 

1 and 2, or the two right angles, are supplementary because they form a 
straight angle. Such angle pairs are called a linear pair. Angles A and Z are 
supplementary because they add up to 180 . (The definition of supplementary 
is sometimes used in proofs. See Chapter 4.)

1
2 P

30° 60°QFIGURE 2-14:  
Complementary 

angles can join 
forces to form a 

right angle. 
© John Wiley & Sons, Inc.

1 2

Z

140°

40°
A

FIGURE 2-15:  
Together, 

supplementary 
angles can form a 

straight line. 
© John Wiley & Sons, Inc.
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 » Vertical angles: Intersecting lines form an X shape, and the angles on the 
opposite sides of the X are called vertical angles. See Figure 2-16, which shows 
vertical angles 1 and 3 and vertical angles 2 and 4. Two vertical angles 
are always the same size as each other. By the way, as you can see in the 
figure, the vertical in vertical angles has nothing to do with the up-and-down 
meaning of vertical.

2

4

3
1

FIGURE 2-16:  
Vertical angles 
share a vertex 

and lie on 
opposite sides of 

the X. 
© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Measuring segments and angles

Doing addition and subtraction with 
segments and angles

Cutting segments and angles into 
two or three congruent pieces

Making the correct assumptions

Sizing Up Segments 
and Analyzing Angles

This chapter contains some pretty simple stuff about the sizes of segments 
and angles, how to measure them, how to add and subtract them, and how 
to bisect and trisect them. But despite the simple nature of these ideas, this 

is important groundwork material, so skip it at your own risk! Because all  polygons 
are made up of segments and angles, these two fundamental objects are the key to 
a great number of geometry problems and proofs.

Measuring Segments and Angles
Measuring segments and angles — especially segments — is a piece o’ cake. For 
a segment, you measure its length; and for an angle, you measure how far open 
it  is (kind of like measuring how far a door is open). Whenever you look at a 
 diagram in a geometry book, paying attention to the sizes of the segments and 
angles that make up a shape can help you understand some of the shape’s impor-
tant properties.

Chapter 3
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Measuring segments
To tell you the truth, I thought measuring segments was too simple of a concept 
to put in this book, but my editor thought I should include it for the sake of com-
pleteness, so here it is. The measure or size of a segment is simply its length. What 
else could it be? After all, length is the only feature a segment has. You’ve got your 
short, your medium, and your long segments. (No, these are not technical math 
terms.) Get ready for another shock: If you’re told that one segment has a length 
of 10 and another has a length of 20, then the 20-unit segment is twice as long as 
the 10-unit segment. Fascinating stuff, right? (I call these 10-unit and 20-unit 
segments because you often don’t see specific units like feet, inches, or miles in a 
geometry problem.)

Congruent segments are segments with the same length. If MN  is congruent to PQ, 
you write MN PQ. You know that two segments are congruent when you know 
that they both have the same numerical length or when you don’t know their 
lengths but you figure out (or are simply told) that they’re congruent. In a figure, 
giving each matching segment the same number of tick marks indicates congru-
ence. In Figure 3-1, for instance, the fact that both WX  and YZ  have three tick 
marks tells you that they are congruent.

Congruent segments (and congruent angles, which I get to in the next section) are 
essential ingredients in the proofs you see in the rest of the book. For instance, 
when you figure out that a side (a segment) of one triangle is congruent to a side 
of another triangle, you can use that fact to help you prove that the triangles are 
congruent to each other (see Chapter 9 for details).

When you write the name of a segment without the bar over it, it means the length 
of the segment, so AG indicates the length of AG . If, for example, XY  has a length 
of 5, you’d write XY 5. And if AB is congruent to CD, their lengths would be 
equal, and you’d write AB CD . Note that in the two preceding equations, an 
equal sign is used, not a congruent symbol.

FIGURE 3-1:  
Two pairs of 

congruent 
segments. 

© John Wiley & Sons, Inc.
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Measuring angles
Measuring an angle is pretty simple, but it can be a bit trickier than measuring a 
segment because the size of an angle isn’t based on something as simple as length. 
The size of an angle is based, instead, on how wide the angle is open. In this section, 
I introduce you to some points and mental pictures that help you understand how 
angle measurement works.

Degree: The basic unit of measure for angles is the degree. One degree is 1
360

 of a 
circle, or 1

360
 of one complete rotation.

A good way to start thinking about the size and degree-measure of angles is by 
picturing an entire pizza — that’s 360  of pizza. Cut a pizza into 360 slices, and the 
angle each slice makes is 1  (I don’t recommend slices this small if you’re hungry). 
For other angle measures, see the following list and Figure 3-2:

FIGURE 3-2:  
Larger angles 

represent bigger 
fractions of  

the pizza. 
© John Wiley & Sons, Inc.
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 » If you cut a pizza into four big slices, each slice makes a 
90  angle 360 4 90 .

 » If you cut a pizza into four big slices and then cut each of those slices in half, 
you get eight pieces, each of which makes a 45  angle 360 8 45 .

 » If you cut the original pizza into 12 slices, each slice makes a 30  angle 
360 12 30 .

So 1
12

 of a pizza is 30 , 1
8

 is 45 , 1
4

 is 90 , and so on. The bigger the fraction of the 

pizza, the bigger the angle.

The fraction of the pizza or circle is the only thing that matters when it comes to 
angle size. The length along the crust and the area of the pizza slice tell you nothing 

about the size of an angle. In other words, 1
6

 of a 10-inch pizza represents the 

same angle as 1
6

 of a 16-inch pizza, and 1
8

 of a small pizza has a larger angle 45  

than 1
12

 of a big pizza 30  — even if the 30  slice is the one you’d want if you 

were hungry. See Figure 3-3.

Another way of looking at angle size is to think about opening a door or a pair of 
scissors or, say, an alligator’s mouth. The wider the mouth is open, the bigger the 
angle. As Figure 3-4 shows, a baby alligator with its mouth opened wide makes a 
bigger angle than an adult alligator with its mouth opened less wide, even if 
there’s a bigger gap at the front of the adult alligator’s mouth.

An angle’s sides are both rays (see Chapter 2), and all rays are infinitely long, 
regardless of how long they look in a figure. The “lengths” of an angle’s sides in 
a diagram aren’t really lengths at all, and they tell you nothing about the angle’s 
size. Even when a diagram shows an angle with two segments for sides, the sides 
are still technically infinitely long rays.

FIGURE 3-3:  
A big pizza with 

little angles and a 
little pizza with 

big angles. 
© John Wiley & Sons, Inc.
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Congruent angles are angles with the same degree measure. In other words, con-
gruent angles have the same amount of opening at their vertices. If you were to 
stack two congruent angles on top of each other with their vertices together, the 
two sides of one angle would align perfectly with the two sides of the other angle.

You know that two angles are congruent when you know that they both have the 
same numerical measure (say, they both have a measure of 70 ) or when you don’t 
know their measures but you figure out (or are simply told) that they’re congruent. 
In figures, angles with the same number of tick marks are congruent to each 
other. See Figure 3-5.

Little angleBig angle

This length
is also
irrelevant.

These lengths
are irrelevant.

The amount the mouth is open
(at the angle’s vertex) is the
only thing that tells you the
size of an angle.

FIGURE 3-4:  
The adult alligator 

is bigger, but  
the baby’s  

mouth makes a  
bigger angle. 

© John Wiley & Sons, Inc.

FIGURE 3-5:  
Two pairs of 

congruent angles. 
© John Wiley & Sons, Inc.
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Adding and Subtracting Segments  
and Angles

The title of this section pretty much says it all: You’re about to see how to add and 
subtract segments and angles. This topic — like measuring segments and angles — 
isn’t exactly rocket science. But adding and subtracting segments and angles is 
important because this geometric arithmetic comes up in proofs and other geometry 
problems. Here’s how it works:

 » Adding and subtracting segments: To add or subtract segments, simply add 
or subtract their lengths. For example, if you put a 4  stick end-to-end with an 
8  stick, you get a total length of 12 . That’s how segments add. Subtracting 
segments is like cutting off 3  from a 10  stick. You end up with a 7  stick. Brain 
surgery this is not.

 » Adding and subtracting angles: To add or subtract angles, you just add or 
subtract the angles’ degrees. You can think of adding angles as putting two or 
more pizza slices next to each other with their pointy ends together. 
Subtracting angles is like starting with some pizza and taking a piece away. 
Figure 3-6 shows how this works.

FIGURE 3-6:  
Adding and 
subtracting 

angles. 
© John Wiley & Sons, Inc.
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Cutting in Two or Three:  
Bisection and Trisection

For all you fans of bicycles and tricycles and bifocals and trifocals — not to men-
tion the biathalon and the triathalon, bifurcation and trifurcation, and bipartition 
and tripartition — you’re really going to love this section on bisection and tri-
section: cutting something into two or three equal parts.

The main point here is that after you do the bisecting or trisecting, you end up 
with congruent parts of the segment or angle you cut up. In Chapter 5, you see how 
this comes in handy in geometry proofs.

Bisecting and trisecting segments
Segment bisection, the related term midpoint, and segment trisection are pretty 
simple ideas. (Their definitions, which follow, are used frequently in proofs. See 
Chapter 4.)

 » Segment bisection: A point, segment, ray, or line that divides a segment into 
two congruent segments bisects the segment.

 » Midpoint: The point where a segment is bisected is called the midpoint of the 
segment; the midpoint cuts the segment into two congruent parts.

 » Segment trisection: Two things (points, segments, rays, lines, or any 
combination of these) that divide a segment into three congruent segments 
trisect the segment. The points of trisection are called — check this out — the 
trisection points of the segment.

I doubt you’ll have any trouble remembering the meanings of bisect and trisect, but 
here’s a mnemonic just in case: A bicycle has two wheels, and to bisect means to 
cut something into two congruent parts; a tricycle has three wheels, and to trisect 
means to cut something into three congruent parts.

Students often make the mistake of thinking that divide means to bisect, or cut 
exactly in half. I suppose this error is understandable because when you do ordinary 
division with numbers, you are, in a sense, dividing the larger number into equal 
parts (24 2 12 because 12 12 24). But in geometry, to divide something just 
means to cut it into parts of any size, equal or unequal. Bisect and trisect, of course, 
do mean to cut into exactly equal parts.
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Here’s a problem you can try using the triangle in Figure 3-7. Given that rays AJ
� ���

 
and AZ
� ���

 trisect BC , determine the length of BC .

Okay, here’s how you solve it: BC  is trisected, so it’s cut into three congruent 
parts; thus, BJ ZC . Just set these equal to each other and solve for x:

4 1 7 11

12 3

4

x x

x

x

Now, plugging 4 into 4 1x  and 7 11x  gives you 17 for each segment. JZ must also 
be 17, so BC must total 3 17, or 51. That does it.

By the way, don’t make the common mistake of thinking that because BC  is 
 trisected, BAC  must be trisected as well.

If a side of a triangle is trisected by rays from the opposite vertex, the vertex angle 
can’t be trisected. The vertex angle often looks like it’s trisected, and it’s often 
divided into nearly-equal parts, but it’s never an exact trisection.

In this particular problem, you might be especially likely to fall prey to this perilous 
pitfall because I have rays AJ

� ���
 and AZ

� ���
 (rather than points J and Z) trisecting BC , 

and rays often do trisect angles. But the givens in this problem refer to the trisec-
tion of BC , not to the trisection of BAC , and the way the rays cut up segment BC  
is a separate and different issue from the way they divide BAC .

Bisecting and trisecting angles
Brace yourself for a real shocker: The terms bisecting and trisecting mean the same 
thing for angles as they do for segments! (Their definitions are often used in 
proofs. Check out Chapter 4.)

 » Angle bisection: A ray that cuts an angle into two congruent angles bisects the 
angle. The ray is called the angle bisector.

FIGURE 3-7:  
A trisected 

segment. 
© John Wiley & Sons, Inc.
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 » Angle trisection: Two rays that divide an angle into three congruent angles 
trisect the angle. These rays are called angle trisectors.

Take a stab at this problem: In Figure  3-8, TP
� ���

 bisects STL, which equals 
12 24x ; TL

� ��
 bisects PTI , which equals 8x . Is STI  trisected, and what is its 

measure?

Nothing to it. First, yes, STI  is trisected. You know this because STL is bisected, 
so 1 must equal 2. And because PTI  is bisected, 2 equals 3. Thus, all three 
angles must be equal, and that means STI  is trisected.

Now find the measure of STI . Because STL — which measures 12 24x  — is 
bisected, 2 must be half its size, or 6 12x . And because PTI  is bisected, 2 
must also be half the size of PTI  — that’s half of 8x , or 4x . Because 2 
equals both 6 12x  and 4x , you set those expressions equal to each other 
and solve for x:

6 12 4

2 12

6

x x

x

x

Then just plug 6 into, say, 4x , which gives you 4 6, or 24  for 2. Angle STI is 
three times that, or 72 . That does it.

When rays trisect an angle of a triangle, the opposite side of the triangle is never 
trisected by these rays.

In Figure 3-8, for instance, because STI  is trisected, SI  is definitely not trisected. 
Note that this is the reverse of the warning in the previous section, which tells you 
that if a side of a triangle is trisected, the angle is not trisected.

FIGURE 3-8:  
A three-way SPLIT. 

© John Wiley & Sons, Inc.
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Proving (Not Jumping to)  
Conclusions about Figures

Here’s something that’s unusual about the study of geometry: In geometry dia-
grams, you’re not allowed to assume that everything that looks true is true.

Consider the triangle in Figure 3-9. Now, if this figure were to appear in a non-
geometry context (for example, the figure could be a roof with a horizontal beam 
and a vertical support), it’d be perfectly sensible to conclude that the two sides of 
the roof are equal, that the beam is perfectly horizontal, that the support is 
 perfectly vertical, and therefore, that the support and the crossbeam are perpen-
dicular. If you see this figure in a geometry problem, however, you can’t assume 
any of these things. These things might certainly turn out to be true (actually, it’s 
extremely likely that they are true), but you can’t assume that they’re true. 
Instead, you have to prove they’re true by airtight, mathematical logic. This way of 
dealing with figures gives you practice in proving things using rigorous deductive 
reasoning.

One way to understand why figures are treated this way in geometry courses is to 
consider that just because two lines in a figure look perpendicular doesn’t 
 guarantee that they are precisely perpendicular. In Figure 3-9, for example, the 
two angles on either side of BD could be 89 99.  and 90 01.  instead of two 90  
angles. Even if you had the most accurate instrument in the world to measure the 
angles, you could never be perfectly accurate. No instrument can measure the 
 difference between a 90  angle and, say, a 90 00000000001.  angle. So if you want 
to know for sure that two lines are perpendicular, you have to use pure logic, not 
measurement.

Here are the lists of things you can and cannot assume about geometry diagrams. 
Refer again to Figure 3-9.

FIGURE 3-9:  
A typical 

geometry 
diagram. 

© John Wiley & Sons, Inc.



CHAPTER 3  Sizing Up Segments and Analyzing Angles      41

In geometry diagrams, you can assume four things; all of them have to do with 
straight lines. Here’s an example of each type of valid assumption using ABC :

 » AC  is straight.

 » ADC  is a straight angle.

 » A, D, and C are collinear.

 » D is between A and C.

In geometry diagrams, you can’t assume things that concern the size of segments 
or angles. You can’t assume that segments and angles that look congruent are 
congruent or that segments and angles that look unequal are unequal; nor can you 
assume anything about the relative sizes of segments and angles. For instance, in 
Figure 3-9, the following aren’t necessarily true:

 » AB CB; AD CD.

 » D is the midpoint of AC .

 » A C ; ABD CBD.

 » BD
� ���

 bisects ABC .

 » AC BD.

 » ADB is a right angle.

 » AB (that’s the length of AB) is greater than AD.

 » ADB is larger than A.

Now, I don’t want to suggest that the way figures look isn’t important. Especially 
when doing geometry proofs, it’s a good idea to check out the proof diagram and 
pay attention to whether segments, angles, and triangles look congruent. If they 
look congruent, they probably are, so the appearance of the diagram is a valuable 
hint about the truth of the diagram. But to establish that something is in fact true, 
you have to prove it.

Hold onto your hat, because in this somewhat peculiar discussion about the treat-
ment of figures, I’ve saved the worst for last. Occasionally, geometry teachers and 
authors will throw you a curveball and draw figures that are warped out of their 
proper shape. This may seem weird, but it’s allowed under the rules of the geometry 
game. Luckily, warped figures like this are fairly rare.
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Consider Figure 3-10. The given triangle on the left is a triangle you might see in 
a geometry problem. In this particular problem, you’d be asked to determine x and 
y, the lengths of the two unknown sides of the triangle. The key to this problem is 
that the three angles are marked congruent. As you may know, the only triangle 
with three equal angles is the equilateral triangle, which has three 60  angles and 
three equal sides. Thus, x and y must both equal 5. The figure on the right shows 
what this triangle really looks like. So Figure  3-10 shows an example of equal 
 segments and angles that are drawn to look unequal.

Now check out Figure 3-11. It illustrates the opposite type of warping: Segments 
and angles that are unequal in reality appear equal in the geometry diagram. If the 
quadrilateral on the left were to appear in a non-geometry context, you would, of 
course, refer to it as a rectangle (and you could safely assume that its four angles 
were right angles). But in this geometry diagram, you’d be wrong to call this 
shape a rectangle. Despite its appearance, it’s not a rectangle; it’s a no-name 
quadrilateral. Check out its actual shape on the right.

If you’re having trouble wrapping your head around this strange treatment of 
geometry diagrams, don’t sweat it. It’ll become clear in subsequent chapters when 
you see it in action.

FIGURE 3-10:  
A triangle as 

drawn and the 
real thing. 

© John Wiley & Sons, Inc.

FIGURE 3-11:  
A quadrilateral as 

drawn and the 
real thing. 

© John Wiley & Sons, Inc.
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IN THIS PART . . .

Learn how to prove something using a deductive 
argument.

Understand fundamental geometric proofs.

Work on longer, more challenging proofs.
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IN THIS CHAPTER

Getting geared up for geometry 
proofs

Introducing if-then logic

Theorizing about theorems and 
defining definitions

Proving that horses don’t talk

Prelude to Proofs

Traditional two-column geometry proofs are arguably the most important 
topic in standard high school geometry courses. And — sorry to be the 
bearer of bad news — geometry proofs give many students more difficulty 

than anything else in the entire high school mathematics curriculum. But before 
you consider dropping geometry for underwater basket weaving, here’s the good 
news: Over the course of several chapters, I give you ten fantastically helpful 
strategies that make proofs much easier than they seem at first. (You can also find 
summaries of the strategies on the online Cheat Sheet at Dummies.com. Just enter 
“Geometry For Dummies Cheat Sheet” in the Search box.) Practice these strategies, 
and you’ll become a proof-writing whiz in no time.

In this chapter, I lay the groundwork for the two-column proofs you do in subsequent 
chapters. First, I give you a schematic drawing that shows you all the  elements of 
a two-column proof and where they go. Next, I explain how you prove something 
using a deductive argument. Finally, I show you how to use deductive reasoning to 
prove that Clyde the Clydesdale will not give your high school commencement 
address. Big surprise!

Chapter 4
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Getting the Lay of the Land:  
The Components of a  
Formal Geometry Proof

A two-column geometry proof involves a geometric diagram of some sort. You’re told 
one or more things that are true about the diagram (the givens), and you’re asked 
to prove that something else is true about the diagram (the prove statement).
That’s it in a nutshell. Every proof proceeds as follows:

1. You begin with one or more of the given facts about the diagram.

2. You then state something that follows from the given fact or facts; then you 
state something that follows from that; then, something that follows from 
that; and so on.

Each deduction leads to the next.

3. You end by making your final deduction — the fact you’re trying to prove.

Every standard, two-column geometry proof contains the following elements. 
The proof mockup in Figure 4-1 shows how these elements all fit together.

 » The diagram: The shape or shapes in the diagram are the subject matter of 
the proof. Your goal is to prove some fact about the diagram (for example, 
that two triangles or two angles in the diagram are congruent). The proof 
diagrams are usually, but not always, drawn accurately. Don’t forget, however, 
that you can’t assume that things that look true are true. For instance, just 
because two angles look congruent doesn’t mean they are. (See Chapter 3 
for more on making assumptions.)

 » The givens: The givens are true facts about the diagram that you build upon 
to reach your goal, the prove statement. You always begin a proof with one of 
the givens, putting it in line 1 of the statement column.

Most people like to mark the diagram to show the information from the 
givens. For example, if one of the givens were AB CB, you’d put little tick 
marks on both segments so that when you glance at the diagram, the 
 congruence is immediately apparent.

 » The prove statement: The prove statement is the fact about the diagram 
that you must establish with your chain of logical deductions. It always goes in 
the last line of the statement column.
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 » The statement column: In the statement column, you put all the given facts, 
the facts that you deduce, and in the final line, the prove statement. In this 
column, you put specific facts about specific geometric objects, such as 

ABD CBD.

 » The reason column: In the reason column, you put the justification for each 
statement that you make. In this column, you write general rules about things 
in general, such as If an angle is bisected, then it’s divided into two congruent 
parts. You do not give the names of specific objects.

FIGURE 4-1:  
Anatomy of a 

geometry proof. 
© John Wiley & Sons, Inc.
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Reasoning with If-Then Logic
Every geometry proof is a sequence of logical deductions. You write one of the 
given facts as statement 1. Then, for statement 2, you put something that follows 
from statement 1 and write your justification for that in the reason column. Then 
you proceed to statement 3, and so on, till you get to the prove statement. The way 
you get from statement 1 to statement 2, from statement 2 to statement 3, and so 
on is by using if-then logic.

By the way, the ideas in the next few sections are huge, so if by any chance you’ve 
been dozing off a bit, wake up and pay attention!

If-then chains of logic
A two-column geometry proof is in essence a logical argument or a chain of logi-
cal deductions, like

1. If I study, then I’ll get good grades.

2. If I get good grades, then I’ll get into a good college.

3. If I get into a good college, then I’ll become a babe/guy magnet.

4. (And so on . . .)

(Except that geometry proofs are about geometric figures, naturally.) Note that 
each of these steps is a sentence with an if clause and a then clause.

Here’s an example of a two-column proof from everyday life. Say you have a 
 Dalmatian named Spot, and you want to prove that he’s a mammal. Figure 4-2 
shows the proof.

On the first line of the statement column, you put down the given fact that Spot is 
a Dalmatian, and you write Given in the reason column. Then, in statement 2, you 

FIGURE 4-2:  
Proving that Spot 

is a mammal. 
© John Wiley & Sons, Inc.
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put down a new fact that you deduce from statement 1 — namely, Spot is a dog. In 
reason 2, you justify or defend that claim with the reason If something is a Dalmatian, 
then it’s a dog.

Here are a couple of ways of looking at how reasons work:

 » Imagine I know that Spot is a Dalmatian and then you say to me, “Spot is a 
dog.” I ask you, “How do you know?” Your response to me is what you’d write 
in the reason column.

 » When you write a reason like If something is a Dalmatian, then it’s a dog, you 
can think of the word if as meaning because I already know, and you can think 
of the word then as meaning I can now deduce. So basically, the second reason 
in Figure 4-2 means that because you already know that Spot is a Dalmatian, 
you can deduce or conclude that Spot is a dog.

Continuing with the proof, in statement 3, you write something that you can 
deduce from statement 2, namely that Spot is a mammal. Finally, for reason 3, you 
write your justification for statement 3: If something is a dog, then it’s a mammal. 
Every geometry proof solution has this same, basic structure.

You’ve got your reasons: Definitions, 
 theorems, and postulates
Definitions, theorems, and postulates are the building blocks of geometry proofs. 
With very few exceptions, every justification in the reason column is one of these 
three things. Look back at Figure 4-2. If that had been a geometry proof instead of 
a dog proof, the reason column would contain if-then definitions, theorems, and 
postulates about geometry instead of if-then ideas about dogs. Here’s the lowdown 
on definitions, theorems, and postulates.

Using definitions in the reason column
Definition: (This is the definition of the word definition; pretty weird, eh?) I’m 
sure you know what a definition is — it defines or explains what a term means. 
Here’s an example: “A midpoint divides a segment into two congruent parts.”

You can write all definitions in if-then form in either direction: “If a point is a 
midpoint of a segment, then it divides that segment into two congruent parts” or 
“If a point divides a segment into two congruent parts, then it’s the midpoint of 
that segment.”

Figure 4-3 shows you how to use both versions of the midpoint definition in a 
two-column proof.
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When you have to choose between these two versions of the midpoint definition, 
remember that you can think of the word if as meaning because I already know and 
the word then as meaning I can now deduce. For example, for reason 2 in the first 
proof in Figure 4-3, you choose the version that goes, “If a point is the midpoint 
of a segment, then it divides the segment into two congruent parts,” because you 
already know that M is the midpoint of AB (because it’s given) and from that 
given fact you can deduce that AM MB.

Using theorems and postulates  
in the reason column
Theorem and postulate: Both theorems and postulates are statements of geo-
metrical truth, such as All right angles are congruent or All radii of a circle are congruent. 
The difference between postulates and theorems is that postulates are assumed to 
be true, but theorems must be proven to be true based on postulates and/or 
already-proven theorems. This distinction isn’t something you have to care a 
great deal about unless you happen to be writing your Ph.D. dissertation on the 
deductive structure of geometry. However, because I suspect that you’re not 
 currently working on your Ph.D. in geometry, I wouldn’t sweat this fine point.

FIGURE 4-3:  
Double duty —  

using both 
versions of the 

midpoint 
definition in the 
reason column. 

© John Wiley & Sons, Inc.
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Written in if-then form, the theorem All right angles are congruent would read, “If two 
angles are right angles, then they’re congruent.” Unlike definitions, theorems are 
generally not reversible. For example, if you reverse this right-angle theorem, you get 
a false statement: “If two angles are congruent, then they’re right angles.” (If a 
theorem works in both directions, you’ll get a separate theorem for each version. The 
two isosceles-triangle theorems — If sides, then angles and If angles, then sides — are 
an example. See Chapter 9.) Figure 4-4 shows you the right-angle theorem in a proof.

When you’re doing your first proofs, or later if you’re struggling with a difficult one, 
it’s very helpful to write your reasons (definitions, theorems, and postulates) in 
 if-then form. When you use if-then form, the logical structure of the proof is easier 
to follow. After you become a proof expert, you can abbreviate your reasons in 
non-if-then form or simply list the name of the definition, theorem, or postulate.

Bubble logic for two-column proofs
I like to add bubbles and arrows to a proof solution to show the connections 
between the statements and the reasons. You won’t be asked to do this when you 
solve a proof; it’s just a way to help you understand how proofs work. Figure 4-5 
shows the Spot-the-dog proof from Figure 4-2, this time with bubbles and arrows 
that show how the logic flows through the proof.

FIGURE 4-4:  
Using a theorem 

in the reason 
column of a 

proof. 
© John Wiley & Sons, Inc.

FIGURE 4-5:  
Follow the arrows 

from bubble  
to bubble. 

© John Wiley & Sons, Inc.
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Follow the arrows from bubble to bubble, and follow my tips to stay out of trouble! 
(It’s because of great poetry like this that they pay me the big bucks.) The next tip 
is really huge, so take heed.

In a two-column proof,

 » The idea in the if clause of each reason must come from the statement 
column somewhere above the reason.

 » The idea in the then clause of each reason must match the idea in the 
statement on the same line as the reason.

The arrows and bubbles in Figure 4-5 show how this incredibly important logical 
structure works.

Horsing Around with a Two-Column Proof
To wrap up this geometry proof prelude, I want to give you one more non-geometry 
proof to show you how a deductive argument all hangs together. In the following 
proof, I brilliantly establish that Clyde the Clydesdale won’t be giving an address 
at your high school commencement. Here’s the basic argument:

1. Clyde is a Clydesdale.

2. Therefore, Clyde is a horse (because all Clydesdales are horses).

3. Therefore, Clyde can’t talk (because horses can’t talk).

4. Therefore, Clyde can’t give a commencement address (because something that 
doesn’t talk can’t give a commencement address).

5. Therefore, Clyde won’t be giving an address at your high school commencement 
(because something that can’t give a commencement address won’t be giving 
one at your high school commencement).

Here’s the argument in a nutshell: Clydesdale  horse  can’t talk  can’t 
give  a  commencement address  won’t give an address at your high school 
commencement.
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Now take a look at what this argument or proof would look like in the standard 
two-column geometry proof format with the reasons written in if-then form. 
When reasons are written this way, you can see how the chain of logic flows.

Given: Clyde is a Clydesdale.

Prove: Clyde won’t be giving an address at your high school commencement.

© John Wiley & Sons, Inc.

Follow the arrows from bubble to bubble. Note again that the idea in the if clause 
of each reason connects to the same idea in the statement column above the line 
of the reason; the idea in the then clause of each reason connects to the same idea 
in the statement column on the same line as the reason.

Notice the difference between the things you put in the statement column and the 
things you put in the reason column: In all proofs, the statement column contains 
specific facts (things about a particular horse, like Clyde is a Clydesdale), and the 
reason column contains general principles (ideas about horses in general, such as 
If something is a horse, then it can’t talk).
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IN THIS CHAPTER

Understanding the complementary 
and supplementary angle theorems

Summing up the addition and 
subtraction theorems

Using doubles, triples, halves, 
and thirds

Identifying congruent angles with 
the vertical angle theorem

Swapping places with the Transitive 
and Substitution Properties

Your Starter Kit 
of Easy Theorems 
and Short Proofs

In this chapter, you move past the warm-up material in previous chapters and 
get to work for real on some honest-to-goodness geometry proofs. (If you’re 
not ready to take this leap, Chapter 4 goes over the components of a two- column 

geometry proof and its logical structure.) Here, I give you a starter kit that  
contains 18 theorems along with some proofs that illustrate how those theorems 
are used.

Chapter 5
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Doing Right and Going Straight: 
Complementary and  
Supplementary Angles

This section introduces you to theorems about complementary and supplementary 
angles. Complementary angles are two angles that add up to 90 , or a right angle; 
two supplementary angles add up to 180 , or a straight angle. These angles aren’t 
the most exciting things in geometry, but you have to be able to spot them in a 
diagram and know how to use the related theorems.

You use the theorems I list here for complementary angles:

 » Complements of the same angle are congruent. If two angles are each 
complementary to a third angle, then they’re congruent to each other. (Note 
that this theorem involves three total angles.)

 » Complements of congruent angles are congruent. If two angles are 
complementary to two other congruent angles, then they’re congruent. (This 
theorem involves four total angles.)

The following examples show how incredibly simple the logic of these two 
 theorems is.

Complements of the Same Angle Complements of Congruent Angles

Given: Diagram as shown Given: Diagram as shown

Conclusion: A C  because they’d 
both have to be 30  angles.

Conclusion: A D  because they’d 
both have to be 40  angles.

© John Wiley & Sons, Inc.
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Note: The logic shown in these two figures works the same, of course, when you don’t 
know the size of the given angles ( B on the left and B and C  on the right).

And here are the two theorems about supplementary angles that work exactly the 
same way as the two complementary angle theorems:

 » Supplements of the same angle are congruent. If two angles are each 
supplementary to a third angle, then they’re congruent to each other.  
(This is the three-angle version.)

 » Supplements of congruent angles are congruent. If two angles are 
supplementary to two other congruent angles, then they’re congruent.  
(This is the four-angle version.)

The previous four theorems about complementary and supplementary angles, as 
well as the addition and subtraction theorems and the transitivity theorems 
(which you see later in this chapter), come in pairs: One of the theorems involves 
three segments or angles, and the other, which is based on the same idea, involves 
four segments or angles. When doing a proof, note whether the relevant part of the 
proof diagram contains three or four segments or angles to determine whether to 
use the three- or four-object version of the appropriate theorem.

Take a look at one of the complementary-angle theorems and one of the 
 supplementary-angle theorems in action:

Given:

Prove:

TD DC

QC DC

TDQ QCT

UDC SCD 	  
© John Wiley & Sons, Inc.

Extra credit: What does UDTQCS stand for?

Before trying to write out a formal, two-column proof, it’s often a good idea to 
think through a seat-of-the-pants argument about why the prove statement has 
to be true. I call this argument a game plan (I give you more details on making a 
game plan in Chapter  6). Game plans are especially helpful for longer proofs, 
because without a plan, you might get lost in the middle of the proof. Throughout 
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this book, I include example game plans for many of the proofs; when I don’t, you 
can try coming up with your own before you read the formal two-column solution 
for the proof.

When working through a game plan, you may find it helpful to make up arbitrary 
sizes for segments and angles in the proof. You can do this for segments and angles 
in the givens and, sometimes, for unmentioned segments and angles. You should 
not, however, make up sizes for things that you’re trying to show are congruent.

Game plan: In this proof, for example, you might say to yourself, “Let’s see. . . . 
Because of the given perpendicular segments, I have two right angles. Next, the 
other given tells me that TDQ QCT . If they were both 50 , QDC  and TCD 
would both be 40 , and then UDC  and SCD would both have to be 140  (because 
a straight line is 180 ).” That’s it.

Here’s the formal proof:

© John Wiley & Sons, Inc.
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Note: Depending on where your geometry teacher falls on the loose-to-rigorous 
scale, she might allow you to omit a step like step 6 in this proof because it’s so 
simple and obvious. Many teachers begin the first semester insisting that every 
little step be included, but then, as the semester progresses, they loosen up a bit 
and let you skip some of the simplest steps.

The answer to the extra credit question is as easy as one, two, three: UDTQCS 
stands for Un, Due, Tre, Quattro, Cinque, Sei. That’s counting to six in Italian. (All of 
you multilingual folks out there may know that counting to six in French will also 
give you the same six letters.)

Addition and Subtraction:  
Eight No-Big-Deal Theorems

In this section, I give you eight simple theorems: four about adding or subtracting 
segments and four (that work exactly the same way) about adding or subtracting 
angles. I’m sure you’ll have no trouble with these theorems because they all involve 
ideas that you would’ve easily understood — and I’m not exaggerating — when 
you were about 7 or 8 years old.

Addition theorems
In this section, I go over the four addition theorems: two for segments and two for 
angles . . . as easy as 2 2 4.

Use these two addition theorems for proofs involving three segments or three angles:

 » Segment addition (three total segments): If a segment is added to two 
congruent segments, then the sums are congruent.

 » Angle addition (three total angles): If an angle is added to two congruent 
angles, then the sums are congruent.

After you’re comfortable with proofs and know your theorems well, you can 
abbreviate these theorems as segment addition or angle addition or simply addition; 
however, when you’re starting out, writing the theorems out in full is a good idea.

Figure 5-1 shows you how these two theorems work.
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If you add BC  to the congruent segments AB and CD, the sums, namely AC  and 
BD, are congruent. In other words, 8 2 8 2. Extraordinary!

And if you add QTR to congruent angles PTQ and RTS , the sums, PTR and 
QTS , will be congruent: 30 50 30 50 . Brilliant!

Note: In proofs, you won’t be given segment lengths and angle measures like the ones 
in Figure 5-1. I put them in the figure so you can more easily see what’s going on.

As you come across theorems in this book, look carefully at the figures that 
accompany them. The figures show the logic of the theorems in a visual way that 
can help you remember the wording of the theorems. Try quizzing yourself by 
reading a theorem and seeing whether you can draw the figure or by looking at a 
figure and trying to state the theorem.

Use these addition theorems for proofs involving four segments or four angles 
(also abbreviated as segment addition, angle addition, or just addition):

 » Segment addition (four total segments): If two congruent segments are 
added to two other congruent segments, then the sums are congruent.

 » Angle addition (four total angles): If two congruent angles are added to two 
other congruent angles, then the sums are congruent.

Check out Figure 5-2, which illustrates these theorems.

FIGURE 5-1:  
Adding one  

thing to two  
congruent things. 

© John Wiley & Sons, Inc.

FIGURE 5-2:  
Adding congruent 

things to 
congruent things. 

© John Wiley & Sons, Inc.
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If PQ and ST  are congruent and QR and TU  are congruent, then PR is obviously 
congruent to SU , right?

And if AYE UYO  (say they’re both 40 ) and EYI OYI  (say they’re both 
20 ), then AYI UYI  (they’d both be 60 ).

Now for a proof that uses segment addition:

Given:

Prove:

MD VI

DX CV

MC XI  
© John Wiley & Sons, Inc.

Impress me: What year is MDXCVI?

Really impress me: What famous mathematician (who made a major breakthrough 
in geometry) was born in this year?

I’ve put what amounts to a game plan for this proof inside the following two-
column solution, between the numbered lines.

© John Wiley & Sons, Inc.
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By the way, did you see the other way of doing this proof? It uses the three-segment 
addition theorem in line 3 and the four-segment addition theorem in line 4.

For the trivia question, did you come up with René Descartes, born in 1596? You 
can see his famous Cartesian plane in Chapter 18.

Before looking at the next example, check out these two tips — they’re huge! They can 
often make a tricky problem much easier and get you unstuck when you’re stuck:

 » Use every given. You have to do something with every given in a proof. So if 
you’re not sure how to do a proof, don’t give up until you’ve asked yourself, 
“Why did they give me this given?” for every single one of the givens. If you 
then write down what follows from each given (even if you don’t know how 
that information will help you), you might see how to proceed. You may have 
a geometry teacher who likes to throw you the occasional curveball, but in 
every geometry book that I know, the authors don’t give you irrelevant givens. 
And that means that every given is a built-in hint.

 » Work backward. Thinking about how a proof will end — what the last and 
second-to-last lines will look like — is often very helpful. In some proofs, you 
may	be	able	to	work	backward	from	the	final	statement	to	the	second-to-last	
statement and then to the third-to-last statement and maybe even to the 
fourth-to-last.	This	makes	the	proof	easier	to	finish	because	you	no	longer	
have to “see” all the way from the given to the prove statement. The proof has, 
in a sense, been shortened. You can use this process when you get stuck 
somewhere in the middle of a proof, or sometimes it’s a good thing to try as 
you begin to tackle a proof.

The following proof shows how you use angle addition:

Given:  bisects 

 and  trisect 

Pro

TB XTZ

TX TZ LTR

� ���

� ��� � ���

vve:  bisects TB LTR
� ���

 
© John Wiley & Sons, Inc.
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In this proof, I’ve added a partial game plan that deals with the part of the proof 
where people might get stuck. The only ideas missing from this game plan are the 
things (which you see in lines 2 and 4) that follow immediately from the two givens.

© John Wiley & Sons, Inc.

Subtraction theorems
In this section, I introduce you to the four subtraction theorems: two for segments 
and two for angles. Each of these corresponds to one of the addition theorems.

Here are the subtraction theorems for three segments and three angles (abbreviated 
as segment subtraction, angle subtraction, or just subtraction):

 » Segment subtraction (three total segments): If a segment is subtracted 
from	two	congruent	segments,	then	the	differences	are	congruent.
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 » Angle subtraction (three total angles): If an angle is subtracted from two 
congruent	angles,	then	the	differences	are	congruent.

Check out Figure 5-3, which provides the visual aids for these two theorems. If 
JL KM , then JK  must be congruent to LM . (Say KL has a length of 3 and JL and KM  
are both 10. Then JK  and LM  are both 10 3, or 7.) For the angles, if EFB DFG  
and you subtract GFB from both, you end up with congruent  differences, EFG 
and DFB.

Last but not least, I give you the subtraction theorems for four segments and for 
four angles (abbreviated just like the subtraction theorems for three things):

 » Segment subtraction (four total segments): If two congruent segments are 
subtracted	from	two	other	congruent	segments,	then	the	differences	are	
congruent.

 » Angle subtraction (four total angles): If two congruent angles are subtracted 
from	two	other	congruent	angles,	then	the	differences	are	congruent.

Figure 5-4 illustrates these two theorems.

FIGURE 5-3:  
The three-thing 
versions of the 
segment- and 

angle-subtraction 
theorems. 

© John Wiley & Sons, Inc.

FIGURE 5-4:  
The four-thing 
versions of the 
segment- and 

angle-subtraction 
theorems. 

© John Wiley & Sons, Inc.
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Because AC  and DF  are congruent and BC  and EF  are congruent, AB and DE 
would have to be congruent as well (both would equal 14 5, or 9). It works the 
same for the angles: If UZW  and XZW  are congruent and VZW  and XZW  
are also congruent, then subtracting the small pair of angles from the big pair 
would leave congruent angles UZV  and YZX .

Before reading the formal, two-column solution of the next proof, try to think 
through your own game plan or commonsense argument about why the prove state-
ment has to be true. Hint: Making up angle measures for the two congruent angles 
in the given and for PUS and QUR may help you see how everything works.

Given:

 bisects 

Prove:

PUR SUQ

UT PUS

QUT RUT

� ���

 
© John Wiley & Sons, Inc.

© John Wiley & Sons, Inc.

Piece o’ cake, right? Now, before moving on to the next section, check out the fol-
lowing. You may have noticed that each of the addition theorems corresponds to 
one of the subtraction theorems and that a similar diagram is used to illustrate 
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each corresponding pair of theorems. Figure 5-1, about addition theorems, pairs 
up with Figure 5-3, about subtraction theorems; and Figures 5-2 and 5-4 pair up 
the same way. Because of the similarity of these figures and the ideas that underlie 
them, people sometimes mix up addition theorems and subtraction theorems. 
Here’s how to keep them straight.

In a proof, you use one of the addition theorems when you add small segments (or 
angles) and conclude that two big segments (or angles) are congruent. You use one 
of the subtraction theorems when you subtract segments (or angles) from big seg-
ments (or angles) to conclude that two small segments (or angles) are congruent. 
In short, addition theorems take you from small to big; subtraction theorems take 
you from big to small.

Like Multiples and Like Divisions?  
Then These Theorems Are for You!

The two theorems in this section are based on very simple ideas (multiplication 
and division), but they do trip people up from time to time, so make sure to pay 
careful attention to how these theorems are used in the example proofs. And note 
my oh-so-helpful tips. They’ll keep you from getting the Like Multiples and Like 
Divisions Theorems confused with the definitions of midpoint, bisect, and trisect 
(which you find in Chapter 3).

Like Multiples: If two segments (or angles) are congruent, then their like multiples 
are congruent. For example, if you have two congruent angles, then three times 
one will equal three times the other.

See Figure  5-5. If AB WX  and AD and WZ  are both trisected, then the Like 
 Multiples Theorem tells you that AD WZ .

Like Divisions: If two segments (or angles) are congruent, then their like divisions 
are congruent. If you have, say, two congruent segments, then 1

4
 of one equals 1

4
 

of the other, or 1
10

 of one equals 1
10

 of the other, and so on.

FIGURE 5-5:  
You can use the 

Like Multiples 
Theorem on two 

trisected 
segments. © John Wiley & Sons, Inc.
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Look at Figure 5-6. If BAC YXZ  and both angles are bisected, then the Like 
Divisions Theorem tells you that 1 3 and that 2 4. And you could also use 
the theorem to deduce that 1 4 and that 2 3. But note that you cannot use the 
Like Divisions Theorem to conclude that 1 2 or 3 4. Those congruencies 
follow from the definition of bisect.

People sometimes get the Like Multiples and Like Divisions Theorems mixed up. 
Here’s a tip that’ll help you keep them straight: In a proof, you use the Like Multiples 
Theorem when you use congruent small segments (or angles) to conclude that two 
big segments (or angles) are congruent. You use the Like Divisions Theorem when 
you use congruent big things to conclude that two small things are congruent.  
In short, Like Multiples takes you from small to big; Like Divisions takes you from 
big to small.

When you look at the givens in a proof and you see one of the terms midpoint, 
bisect, or trisect mentioned twice, then you’ll probably use either the Like Multiples 
Theorem or the Like Divisions Theorem. But if the term is used only once, you’ll 
likely use the definition of that term instead.

You see how to use the Like Multiples Theorem in the next proof.

Given:

 and  trisect 

EHM JMH

NHM IMH

HE HF GHN

MJ

� ��� � ���
� ���� � ���

 and  trisect 
Prove:

MK LMI
GHN LMI  

© John Wiley & Sons, Inc.

FIGURE 5-6:  
Congruent angles 

divided into 
congruent parts. 

© John Wiley & Sons, Inc.
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Game plan: Here’s how your thought process for this proof might go: Ask yourself 
how you can use the givens. In this proof, can you see what you can deduce from 
the two pairs of congruent angles in the given? If not, make up arbitrary measures 
for the angles. Say EHM  and JMH  are each 65  and NHM  and IMH  are each 
40 . What would follow from that? You subtract 40  from 65  and get 25  for both 

EHN  and JMI . Then, when you see trisect mentioned twice in the other givens, 
that should ring a bell and make you think Like Multiples or Like Divisions. Because 
you use small things ( EHN  and JMI) to deduce the congruence of bigger things 
( GHN  and LMI), Like Multiples is the ticket.

© John Wiley & Sons, Inc.

Now for a proof that uses Like Divisions:

Given:

 is the midpoint of 

 is the midpoint of 

P

ND EL

O NE

A DL

rrove: NO AL  
© John Wiley & Sons, Inc.

Here’s a possible game plan: What can you do with the first given? If you can’t 
figure that out right away, make up lengths for ND, EL, and DE. Say that ND and 
EL are both 12 and that DE is 6. That would make both NE  and DL 18 units long. 
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Then, because both of these segments are bisected by their midpoints, NO and AL 
must both be 9. That’s a wrap.

© John Wiley & Sons, Inc.

The Like Divisions Theorem is particularly easy to get confused with the definitions 
of midpoint, bisect, and trisect (see Chapter 3), so remember this: Use the definition 
of midpoint, bisect, or trisect when you want to show that parts of one bisected or 
trisected segment or angle are equal to each other. Use the Like Divisions Theorem 
when two objects are bisected or trisected (like NE  and DL in the preceding proof) 
and you want to show that a part of one NO  is equal to a part of the other AL .

The X-Files: Congruent Vertical  
Angles Are Out There

When two lines intersect to make an X, angles on opposite sides of the X are called 
vertical angles (more on that in Chapter 2). These angles are equal, and here’s the 
official theorem that tells you so.

Vertical angles are congruent: If two angles are vertical angles, then they’re 
 congruent (see Figure 5-7).

FIGURE 5-7:  
Angles 1 and 3 
are congruent 

vertical angles,  
as are angles 2 

and 4. © John Wiley & Sons, Inc.
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Vertical angles are one of the most frequently used things in proofs and other 
types of geometry problems, and they’re one of the easiest things to spot in a 
diagram. Don’t neglect to check for them!

Here’s an algebraic geometry problem that illustrates this simple concept: Determine 
the measure of the six angles in the following figure.

© John Wiley & Sons, Inc.

Vertical angles are congruent, so 1 4 and 2 5; and thus you can set their 
measures equal to each other:

1 4

5 2 2

2 5

6 15x y x y x y

and

Now you have a system of two equations and two unknowns. To solve the system, 
first solve each equation for y:

y x y x3 6 15

Next, because both equations are solved for y, you can set the two x-expressions 
equal to each other and solve for x:

3 6 15

3 15

5

x x

x

x

To get y, plug in –5 for x in the first simplified equation:

y x

y

y

3

3 5

15
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Now plug 5 and 15 into the angle expressions to get four of the six angles:

4 1 5 2 5 5 2 15 5

5 2 6 6 5 30

x y

x

To get 3, note that 1, 2, and 3 make a straight line, so they must sum to 180 :

1 2 3 180

5 30 3 180

3 145

Finally, 3 and 6 are congruent vertical angles, so 6 must be 145  as well. Did 
you notice that the angles in the figure are absurdly out of scale? Don’t forget that 
you can’t assume anything about the relative sizes of angles or segments in a 
diagram (see Chapter 3).

Pulling the Switch with the  
Transitive and Substitution Properties

The Transitive Property and the Substitution Property are two principles that you 
should understand right off the bat. If a b  and b c, then a c, right? That’s 
transitivity. And if a b  and b c , then a c. That’s substitution. Easy enough. In 
the following list, you see these theorems in greater detail:

 » Transitive Property (for three segments or angles): If two segments (or 
angles) are each congruent to a third segment (or angle), then they’re 
congruent to each other. For example, if A B and B C , then 

A C  ( A and C  are each congruent to B, so they’re congruent to 
each	other).	See	Figure 5-8.

 » Transitive Property (for four segments or angles): If two segments (or 
angles) are congruent to congruent segments (or angles), then they’re 
congruent to each other. For example, if AB CD, CD EF , and EF GH , 
then AB GH . (AB and GH  are congruent to the congruent segments CD 
and EF ,	so	they’re	congruent	to	each	other.)	See	Figure 5-9.

 » Substitution Property: If two geometric objects (segments, angles, triangles, 
or whatever) are congruent and you have a statement involving one of them, 
you can pull the switcheroo and replace the one with the other. For example, 
if X Y  and Y  is supplementary to Z , then X  is supplementary to 

Z .	A	figure	isn’t	especially	helpful	for	this	property,	so	I’m	skipping	it.
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To avoid getting the Transitive and Substitution Properties mixed up, just follow 
these guidelines:

 » Use the Transitive Property as the reason in a proof when the statement on the 
same line involves congruent things.

 » Use the Substitution Property when the statement does not involve a congru-
ence. Note: The Substitution Property is the only theorem in this chapter that 
doesn’t involve a congruence in the statements column.

Check out this TGIF rectangle proof, which deals with angles:

Given:  is a right angle

Prove:  is complementary 

TFI

1 2

2 tto 3 
© John Wiley & Sons, Inc.

FIGURE 5-8:  
The Transitive 

Property tells you 
that A C . 

© John Wiley & Sons, Inc.

FIGURE 5-9:  
Three congruency 

connections 
make AB and 

GH  congruent to 
each other. 

© John Wiley & Sons, Inc.
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No need for a game plan here because the proof is so short — take a look:

© John Wiley & Sons, Inc.

And for the final segment of the program, here’s a related proof, OSIM (Oh Shoot, 
It’s Monday):

Given:  is the midpoint of  and 

Prove:

X MS OI

SX IX

MX OX  
© John Wiley & Sons, Inc.

This is another incredibly short proof that doesn’t call for a game plan.

© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Making a game plan

Starting at the start, working from 
the end, and meeting in the middle

Making sure your logic holds

The Ultimate 
Guide to Tackling 
a Longer Proof

Chapters 4 and 5 start you off with short proofs and a couple dozen basic 
theorems. Here, I go through a single, longer proof in great detail, carefully 
analyzing each step. Throughout the chapter, I walk you through the entire 

thought process that goes into solving a proof, reviewing and expanding on the 
half dozen or so proof strategies from Chapters 4 and 5. When you’re working on 
a proof and you get stuck, this chapter is a good one to come back to for tips on 
how to get moving again.

Chapter 6
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The proof I’ve created for this chapter isn’t so terribly gnarly; it’s just a bit longer 
than the ones in Chapter 5. Here it is:

Given:

 is complementary to 

 is comple

BD DE

BF FE

1 2

5 3

6 mmentary to 

Prove:  bisects 

4

BX ABC
� ���

© John Wiley & Sons, Inc.

Making a Game Plan
A good way to begin any proof is to make a game plan, or rough outline, of how 
you’d do the proof. The formal way of writing out a two-column proof can be dif-
ficult, especially at first — almost like learning a foreign language. Writing a 
proof is easier if you break it into two shorter, more-manageable pieces.

First, you jot down or simply think through a game plan, in which you go through 
the logic of the proof with your common sense without being burdened by getting 
the technical language right. Once you’ve done that, the second step of translating 
that logic into the two-column format isn’t so hard.

As you see in Chapter 5, when you’re working through a game plan, it’s some-
times a good idea to make up arbitrary numbers for the segments and angles in 
the givens and for unmentioned segments and angles. You should not, however, 
make up numbers for segments and angles that you’re trying to show are congru-
ent. This optional step makes the proof diagram more concrete and makes it eas-
ier for you to get a handle on how the proof works.

Here’s one possible game plan for the proof we’re working on: The givens provide 
you with two pairs of perpendicular segments; that gives you 90  for BDE   
and  BFE. Then, say congruent angles 1 and 2 are both 30 . That would make 
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3 and 4 both equal to 90 30 , or 60 . Next, because 3 and 5 are comple-
mentary, as are 4 and 6, 5 and 6 would both be 30 . Angles 5 and 8 are 
congruent vertical angles, as are 6 and 7, so 7 and 8 would also have to be 
30  — and thus they’re congruent. Finally, because 7 8, ABC  is bisected. 
That does it.

If you have trouble keeping track of the chain of logic as you work through a game 
plan, you might want to put marks on the proof diagram as you go through each 
logical step. For example, whenever you deduce that a pair of segments or angles 
is congruent, you could show that by putting tick marks on the diagram. Marking 
the diagram gives you a quick visual way to keep track of your reasoning.

When doing a proof, thinking through a rough sketch of the proof argument like 
the preceding game plan is always a good idea. However, there’ll likely be occa-
sions when you can’t figure out the entire argument right away. If this happens to 
you, you can use the strategies presented in the rest of this chapter to help you 
think through the proof. The upcoming sections also provide some tips that can 
help you turn a bare-bones game plan into a fleshed-out, two-column proof.

Using All the Givens
Perhaps you don’t follow the game plan in the previous section — or you get it but 
don’t think you would’ve been able to come up with it on your own in one shot — 
and so you’re staring at the proof and just don’t know where to begin. My advice: 
Check all the givens in the proof and ask yourself why they’d tell you each given.

Every given is a built-in hint.

Look at the five givens in this proof (see the chapter intro). It’s not immediately 
clear how the third, fourth, and fifth givens can help you, but what about the first 
two about the perpendicular segments? Why would they tell you this? What do 
perpendicular lines give you? Right angles, of course. Okay, so you’re on your 
way — you know the first two lines of the proof (see Figure 6-1).

FIGURE 6-1:  
The first two lines 

of the proof. 
© John Wiley & Sons, Inc.
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Note that the second reason just about writes itself if you remember how the  
if-then structure of reasons works (see the next section and Chapter 4 for more  
on if-then logic).

Making Sure You Use If-Then Logic
Moving from the givens to the final conclusion in a two-column proof is sort of 
like knocking over a row of dominoes. Each statement, like each domino, knocks 
over another statement (though, unlike with dominoes, a statement doesn’t 
always knock over the very next one). The if-then sentence structure of each rea-
son in a two-column proof shows you how each statement “knocks over” another 
statement. In Figure 6-1, for example, consider the reason “if two segments are 
perpendicular, then they form a right angle.” The perpendicular domino (state-
ment 1) knocks over the right-angle domino (statement 2). In Figure 6-2, one 
more line is added to this proof. Reason 3 explains how the right-angle domino 
(statement 2) knocks over the congruent angle domino (statement 3). This pro-
cess continues throughout the whole proof, but, as mentioned above, it’s not 
always as simple as 1 knocks over 2, 2 knocks over 3, 3 knocks over 4, and so on. 
Sometimes you need two statements to knock over another, and sometimes you 
skip statements; in another proof, for example, statement 3 might knock over 
statement 5. Focusing on the if-then logic of a proof helps you see how the whole 
proof fits together.

Make sure that the if-then structure of your reasons is correct (I cover if-then 
logic in more depth in Chapter 4):

 » The idea or ideas in the if clause of a reason must appear in the statement 
column somewhere above the line of that reason.

 » The single idea in the then clause of a reason must be the same idea that’s in 
the statement directly across from the reason.

Look back at Figure 6-1. Because statement 1 is the only statement above reason 2, 
it’s the only place you can look for the ideas that go in the if clause of reason 2. So 
if you begin this proof by putting the two pairs of perpendicular segments in 
statement 1, then you have to use that information in reason 2, which must there-
fore begin “if segments are perpendicular, then . . .”

Now say you didn’t know what to put in statement 2. The if-then structure of reason 
2 helps you out. Because reason 2 begins “if two segments are perpendicular . . .”  
you’d ask yourself, “Well, what happens when two segments are perpendicular?” 
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The answer, of course, is that right angles are formed. The right-angle idea must 
therefore go in the then clause of reason 2 and right across from it in statement 2.

Okay, now what? Well, think about reason 3. One way it could begin is with the 
right angles from statement 2. The if clause of reason 3 might be “if two angles 
are right angles . . .” Can you finish that? Of course: If two angles are right angles, 
then they’re congruent. So that’s it: You’ve got reason 3, and statement 3 must 
contain the idea from the then clause of reason 3, the congruence of right angles. 
Figure 6-2 shows you the proof so far.

When writing proofs, you need to spell out every little step as if you had to make 
the logic clear to a computer. For example, it may seem obvious that if you have 
two pairs of perpendicular segments, you’ve got congruent right angles, but this 
simple deduction takes three steps in a two-column proof. You have to go from 
perpendicular segments to right angles and then to congruent right angles — you 
can’t jump straight to the congruent right angles. That’s the way computers 
“think”: A leads to B, B leads to C, C leads to D, and so on. You must make explicit 
every link in the chain of logic.

Chipping Away at the Problem
Face it: You’re going to get stuck at one point or another while working on some 
proof, or heaven forbid, at several points in one proof! Wondering what you should 
do when you get stuck?

Try something. When doing geometry proofs, you need to be willing to experi-
ment with ideas using trial and error. Doing proofs isn’t as black and white as the 
math you’ve done before. You often can’t know for sure what’ll work. Just try 
something, and if it doesn’t work, try something else. Sooner or later, the whole 
proof should fall into place.

FIGURE 6-2:  
The first three 

lines of the proof. 
© John Wiley & Sons, Inc.
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So far in the proof in this chapter, you have the two congruent angles in statement 3, 
but you can’t make more progress with that idea alone. So check out the givens again. 
Which of the three unused givens might build on statement 3? There’s no way to 
answer that with certainty, so you need to trust your instincts, pick a given, and try 
it (or if you’re thinking you don’t have instincts for this, then just try something, 
anything).

The third given says 1 2. That looks promising because angles 1 and 2 are part 
of the right angles from statement 3. You should ask yourself, “What would follow 
if 1 and 2 were, say, 35 ?” You know the right angles are 90 , so if 1 and 2 
were 35 , then 3 and 4 would both have to be 55  and thus, obviously, they’d be 
congruent. That’s it. You’re making progress. You can use that third given in 
statement 4 and then state that 3 4 in statement 5.

Figure 6-3 shows the proof up to statement 5. The bubbles and arrows show you 
how the statements and reasons connect to each other. You can see that the if 
clause of each reason connects to a statement from above the reason and that the 
then clause connects to the statement on the same line as the reason. Because 
I haven’t gone over reason 5 yet, it’s not in the figure. See whether you can figure 
out reason 5 before reading the explanation that follows. Hint: The then clause for 
reason 5 must connect to statement 5 as shown in the figure.

FIGURE 6-3:  
The first five lines 

of the proof 
(minus reason 5). 

© John Wiley & Sons, Inc.
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So, did you figure out reason 5? It’s angle subtraction because, using 35  for 1 and 
2, 3 and 4 in statement 5 ended up being 55  angles, and you get the answer 

of 55  by doing a subtraction problem, 90 35 55 . (Don’t make the mistake of 
thinking that this is angle addition because 35 55 90 .) You’re subtracting 
two angles from two other angles, so you use the four-angle version of angle sub-
traction (see Chapter 5). Reason 5 is, therefore, “If two congruent angles ( 1 and 

2) are subtracted from two other congruent angles (the right angles), then the 
differences ( 3 and 4) are congruent.”

At this stage, you may feel a bit (or more than a bit) disconcerted if you don’t 
know where these five lines are taking you or whether they’re correct or not. 
“What good is it,” you might ask, “to get five lines done when I don’t know where 
I’m going?” That’s an understandable reaction and question. Here’s the answer.

If you’re in the middle of solving a proof and can’t see how to get to the end, 
remember that taking steps is a good thing. If you’re able to deduce more and 
more facts and can begin filling in the statement column, you’re very likely on the 
right path. Don’t worry about the possibility that you’re going the wrong way. 
(Although such detours do happen from time to time, don’t sweat it. If you hit a 
dead end, just go back and try a different tack.)

Don’t feel like you have to score a touchdown (that is, see how the whole proof fits 
together). Instead, be content with just making a first down (getting one more 
statement), then another first down, then another, and so on. Sooner or later, 
you’ll make it into the end zone. I once heard about a student who went from get-
ting C’s and D’s in geometry to A’s and B’s by merely changing his focus from 
scoring touchdowns to just making yardage.

Jumping Ahead and Working Backward
Assume that you’re in the middle of a proof and you can’t see how to get to the 
finish line from where you are now. No worries — just jump to the end of the 
proof and work backward.

Okay, so picking up where I left off on this chapter’s proof: You’ve completed five 
lines of the proof, and you’re up to 3 4. Where to now? Going forward from 
here may be a bit tricky, so work backward. You know that the final line of the 
proof has to be the prove statement: BX

� ���
 bisects ABC . Now, if you think about 

what the final reason has to be or what the second-to-last statement should be, it 
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shouldn’t be hard to see that you need to have two congruent angles (the two 
half-angles) to conclude that a larger angle is bisected. Figure  6-4 shows you 
what the end of the proof looks like. Note the if-then logic bubbles (if clauses in 
reasons connect to statements above; then clauses in reasons connect to state-
ments on the same line).

Try to continue going backward to the third-to-last statement, the fourth-to-last 
statement, and so on. (Working backward through a proof always involves some 
guesswork, but don’t let that stop you.) Why might 7 be congruent to 8? Well, 
you probably don’t have to look too hard to spot the pair of congruent vertical 
angles, 5 and 8, and the other pair, 6 and 7.

Okay, so you want to show that 7 is congruent to 8, and you know that  
6 equals 7 and 5 equals 8. So if you were to know that 5 and 6 are 

 congruent, you’d be home free.

Now that you’ve worked backward a number of steps, here’s the argument in the 
forward direction: The proof could end by stating in the fourth-to-last statement 
that 5 6, then in the third-to-last that 5 8 and 6 7 (because verti-
cal angles are congruent), and then in the second-to-last that 7 8 by the 
Transitive Property (for four angles — see Chapter 5). Figure 6-5 shows how this 
all looks written out in the two-column format.

FIGURE 6-4:  
The proof’s last 

two lines. 
© John Wiley & Sons, Inc.
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Filling In the Gaps
As I explain in the preceding section, working backward from the end of a proof is 
a great strategy. You can’t always work as far backward as I did in this proof — 
sometimes you can only get to the second-to-last statement or maybe to the 
third-to-last. But even if you fill in only one or two statements (in addition to the 
automatic final statement), those additions can be very helpful. After making  
the additions, the proof is easier to finish because your new “final” destination 
(say the third-to-last statement) is fewer steps away from the beginning of the 
proof and is thus an easier goal to aim for. It’s kind of like solving one of those 
mazes you see in a magazine or newspaper: You can work from the Start; then, if 
you get stuck, you can work from the Finish. Finally, you can go back to where you 
left off on the path from the Start and simply connect the ends. Figure 6-6 shows 
the process.

FIGURE 6-5:  
The end of the 
proof (so far). 

© John Wiley & Sons, Inc.
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Okay, what do you say I wrap up this proof? All that remains to be done is to bridge 
the gap between statement 5 3 4 , and the fourth-to-last statement 

5 6 . There are two givens you haven’t used yet, so they must be the key to 
finishing the proof.

How can you use the givens about the two pairs of complementary angles? You 
might want to try the plugging-in-numbers idea again. Use the same numbers as 
before (from “Making a Game Plan”) and say that congruent angles 3 and 4 
are each 55 . Angle 5 is complementary to 3, so if 3 were 55 , 5 would have to 
be 35 . Angle 6 is complementary to 4, so 6 also ends up being 35 . That does 
it: 5 and 6 are congruent, and you’ve connected the loose ends. All that’s left is 
to finish writing out the formal proof, which I do in the next section.

By the way, using angle sizes like this is a great strategy, but it’s often unnecessary. 
If you know your theorems well, you might simply realize that because 3 and 4 
are congruent, their complements ( 5 and 6) must also be congruent.

Writing Out the Finished Proof
Sound the trumpets! Here’s the finished proof complete with the flow-of-logic 
bubbles (see Figure 6-7). (This time, I’ve put in only the arrows that connect to 
the if clause of each reason. You know that each reason’s then clause must connect 
to the statement on the same line.) If you understand all the strategies and tips 
covered in this chapter and you can follow every step of this proof, you should be 
able to handle just about any proof that’s thrown at you.

FIGURE 6-6:  
Work from both 
ends, and then 
bridge the gap. 

© John Wiley & Sons, Inc.
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FIGURE 6-7:  
The finished 

proof. 
© John Wiley & Sons, Inc.
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IN THIS PART . . .

Get familiar with triangle basics.

Have fun with right triangles.

Work on congruent triangle proofs.
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IN THIS CHAPTER

Looking at a triangle’s sides: Equal or 
unequal

Uncovering the triangle inequality 
principle

Classifying triangles by their angles

Calculating the area of a triangle

Finding the four “centers” of a 
triangle

Grasping Triangle 
Fundamentals

Considering that it’s the runt of the polygon family, the triangle sure does 
play a big role in geometry. Triangles are one of the most important com-
ponents of geometry proofs (you see triangle proofs in Chapter 9). They 

also have a great number of interesting properties that you might not expect from 
the simplest possible polygon. Maybe Leonardo da Vinci (1452–1519) was on to 
something when he said, “Simplicity is the ultimate sophistication.”

In this chapter, I take you through the triangle basics — their names, sides, 
angles, and area. I also show you how to find the four “centers” of a triangle.

Taking In a Triangle’s Sides
Triangles are classified according to the length of their sides or the measure of 
their angles. These classifications come in threes, just like the sides and angles 
themselves. That is, a triangle has three sides, and three terms describe triangles 

Chapter 7
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based on their sides; a triangle also has three angles, and three classifications of 
triangles are based on their angles. I talk about classifications based on angles in 
the upcoming section “Getting to Know Triangles by Their Angles.”

The following are triangle classifications based on sides:

 » Scalene triangle: A scalene triangle is a triangle with no congruent sides

 » Isosceles triangle: An isosceles triangle is a triangle with at least two  
congruent sides

 » Equilateral triangle: A equilateral triangle is a triangle with three  
congruent sides

Because an equilateral triangle is also isosceles, all triangles are either scalene or 
isosceles. But when people call a triangle isosceles, they’re usually referring to a 
 triangle with only two equal sides, because if the triangle had three equal sides, 
they’d call it equilateral. So is this three types of triangles or only two? You be  
the judge.

Scalene triangles: Akilter, awry, and askew
In addition to having three unequal sides, scalene triangles have three unequal 
angles. The shortest side is across from the smallest angle, the medium side is 
across from the medium angle, and — surprise, surprise — the longest side is 
across from the largest angle. Figure 7-1 shows you what I mean.

The ratio of sides doesn’t equal the ratio of angles. Don’t assume that if one side 
of a triangle is, say, twice as long as another side that the angles opposite those 
sides are also in a 2 1:  ratio. The ratio of the sides may be close to the ratio  
of the angles, but these ratios are never exactly equal (except when the sides  
are equal).

FIGURE 7-1:  
The Goldilocks 

rule: Small, 
medium, and 

large sides mirror 
small, medium, 

and large angles. 
© John Wiley & Sons, Inc.
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If you’re trying to figure out something about triangles — such as whether an 
angle bisector also bisects (cuts in half) the opposite side — you can sketch a 
 triangle and see whether it looks true. But the triangle you sketch should be a 
non-right-angle, scalene triangle (as opposed to an isosceles, equilateral, or right 
triangle). This is because scalene triangles, by definition, lack special properties 
such as congruent sides or right angles. If you sketch, say, an isosceles triangle 
instead, any conclusion you reach may be true only for triangles of this special 
type. In general, in any area of mathematics, when you want to investigate some 
idea, you shouldn’t make things more special than they have to be.

Isosceles triangles: Nice pair o’ legs
An isosceles triangle has two equal sides and two equal angles. The equal sides are 
called legs, and the third side is the base. The two angles touching the base (which 
are congruent, or equal) are called base angles. The angle between the two legs is 
called the vertex angle. See Figure 7-2.

SCALENE TRIANGLES APLENTY
This fact may surprise you: In contrast to what you see in geometry books, which are 
loaded with isosceles and equilateral triangles (and right triangles), 99.999. . . percent of 
triangles in the mathematical universe are non-right-angle, scalene triangles. All the spe-
cial triangles (isosceles, equilateral, and right triangles) are sort of like infinitesimal nee-
dles in the haystack of all triangles. So if you were to pick a triangle at random from all 
possible triangles, the probability of picking an isosceles triangle, an equilateral triangle, 
or a right triangle is pretty much a big, fat 0 percent! This is surprising to most people 
because special triangles (isosceles, right, and equilateral) do pop up all over the  
place in the real world (in buildings, everyday products, and so on) — and that’s why we 
study them.

FIGURE 7-2:  
Two run-of-the-

mill isosceles 
triangles. 

© John Wiley & Sons, Inc.
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Equilateral triangles: All parts  
are created equal
An equilateral triangle has three equal sides and three equal angles (which are 
each 60 ). Its equal angles make it equiangular as well as equilateral. You don’t 
often hear the expression equiangular triangle, however, because the only triangle 
that’s equiangular is the equilateral triangle, and everyone calls this triangle equi-
lateral. (With quadrilaterals and other polygons, however, you need both terms, 
because an equiangular figure, such as a rectangle, can have sides of different 
lengths, and an equilateral figure, such as a rhombus, can have angles of different 
sizes. See Chapter 12 for details.)

If you cut an equilateral triangle in half right down the middle, you get two 
30 60 90- -  triangles. You see the incredibly important 30 60 90- -  triangle in the 
next chapter.

Introducing the Triangle  
Inequality Principle

The triangle inequality principle: The triangle inequality principle states that the 
sum of the lengths of any two sides of a triangle must be greater than the length 
of the third side. This principle comes up in a fair number of problems, so don’t 
forget it! It’s based on the simple fact that the shortest distance between two 
points is a straight line. Check out Figure 7-3 and the explanation that follows to 
see what I mean.

In ABC , what’s the shortest route from A to B? Naturally, going straight across 
from A to B is shorter than taking a detour by traveling from A to C and then on 
to B. That’s the triangle inequality principle in a nutshell.

FIGURE 7-3:  
The triangle 

inequality 
principle lets  
you find the 

possible lengths 

of side AC . 
© John Wiley & Sons, Inc.
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In ABC , because you know that AB must be less than AC plus CB, x 8 must be 
greater than 10; therefore,

x

x

8 10

2

But don’t forget that the same principle applies to the path from A to C; thus, 
8 10 must be greater than x:

8 10

18

x

x

You can write both of these answers as a single inequality:

2 18x

These are the possible lengths of side AC . Figure 7-4 shows this range of lengths. 
Think of vertex B as a hinge. As the hinge opens more and more, the length of AC  
grows.

Note: Give yourself a pat on the back if you’re wondering why I didn’t mention the 
third path, from B to C. Here’s why: In the first inequality above, I put the longer 
known side (the 10) on the right side of the inequality, and in the second inequal-
ity, I put the unknown side (the x) on the right sides of the inequality. That’s all 
you need to do to get your answer. You don’t have to do a third inequality with the 
shorter of the two known sides (the 8) on the right side of the inequality, because 
that won’t add anything to your answer — you’d simply find that x has to be 
greater than –2, and side lengths have to be positive, anyway.

By the way, if this problem had been about three towns A, B, and C instead of 
ABC , then the possible distances between towns A and C would look the same 

except that the less-than symbols would be less-than-or-equal-to symbols:

2 18x

FIGURE 7-4:  
Triangle ABC 

changes as side 
AC  grows. 

© John Wiley & Sons, Inc.
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This is because — unlike vertices A, B, and C of ABC  — towns A, B, and C can lie 
in a straight line. Look again at Figure 7-4. If B goes down to 0 , the towns would 
be in a line, and the distance from A to C would be exactly 2; if B opens all the 
way to 180 , the towns would again be in a line, and the distance from A to C would 
be exactly 18. You can’t do this with the triangle problem, however, because when 
A, B, and C are in a line, there’s no triangle left.

Getting to Know Triangles by Their Angles
As I mention in the earlier section titled “Taking In a Triangle’s Sides,” you can 
classify triangles by their angles as well as by their sides. Classifications by angles 
are as follows:

 » Acute triangle: An acute triangle is a triangle with three acute angles 
(less than 90 ).

 » Obtuse triangle: An obtuse triangle is a triangle with one obtuse angle 
(greater than 90 ). The other two angles are acute. If a triangle were to have 
two obtuse angles (or three), two of its sides would go out in opposite 
directions and never come together to form a triangle.

 » Right triangle: A right triangle is a triangle with a single right angle (90 ) and 
two acute angles. The legs of a right triangle are the sides touching the right 
angle, and the hypotenuse is the side across from the right angle. I devote 
Chapter 8 to right triangles.

The angles of a triangle add up to 180 . That’s another reason why if one of the 
angles of a triangle is 90  or larger, the other two angles have to be acute.

I show you one example of this 180  total in the section titled “Equilateral triangles.” 
The angles of an equilateral triangle are 60 , 60 , and 60 . In Chapter 8, you see two 
other important examples: the 30 60 90- -  triangle and the 45 45 90- -  triangle.

Sizing Up Triangle Area
In this section, I run through everything you need to know to determine a trian-
gle’s area (as you probably know, area is the amount of space inside a figure). I 
show you what an altitude is and how you use it in the standard triangle area 
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formula. I also let you in on a shortcut that you can use when you know all three 
sides of a triangle and want to find the area directly, without bothering to calcu-
late the length of an altitude.

Scaling altitudes
Altitude (of a triangle): An altitude is a segment from a vertex of a triangle to the 
opposite side (or to the extension of the opposite side if necessary) that’s perpen-
dicular to the opposite side; the opposite side is called the base. (You use the defi-
nition of altitude in some triangle proofs. See Chapter 9.)

Imagine that you have a cardboard triangle standing straight up on a table. The 
altitude of the triangle tells you exactly what you’d expect — the triangle’s height 
(h) measured from its peak straight down to the table. This height goes down to 
the base of the triangle that’s flat on the table. Figure 7-5 shows you an example 
of an altitude.

Every triangle has three altitudes, one for each side. Figure 7-6 shows the same 
triangle from Figure 7-5 standing up on a table in the other two possible positions: 
with CB as the base and with BA as the base.

Every triangle has three altitudes whether or not the triangle is standing up on a 
table. And you can use any side of a triangle as a base, regardless of whether that 
side is on the bottom. Figure 7-7 shows ABC  again with all three of its altitudes.

FIGURE 7-5:  
BR  is one of the 

altitudes of 
ABC . 

© John Wiley & Sons, Inc.

FIGURE 7-6:  
AS  and CT   

are the other  
two altitudes  

of ABC . 
© John Wiley & Sons, Inc.
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The following points tell you about the length and location of the altitudes of the 
different types of triangles (see “Taking In a Triangle’s Sides” and “Getting to 
Know Triangles by Their Angles” for more on naming triangles):

 » Scalene: None of the altitudes has the same length.

 » Isosceles: Two altitudes have the same length.

 » Equilateral: All three altitudes have the same length.

 » Acute: All three altitudes are inside the triangle.

 » Right: One altitude is inside the triangle, and the other two altitudes are the 
legs of the triangle (remember this when figuring the area of a right triangle).

 » Obtuse: One altitude is inside the triangle, and two altitudes are outside the 
triangle.

Determining a triangle’s area
In this section, I give you three methods for calculating a triangle’s area: the well-
known standard formula, a little-known but very useful 2,000-year-old fancy-pants 
formula, and the formula for the area of an equilateral triangle.

Tried and true: The triangle area  
formula everyone knows
Triangle area formula: You likely first ran into the basic triangle area formula in 
about fifth or sixth or seventh grade. If you’ve forgotten it, no worries — I have it 
right here:

Area base height1
2

Assume for the sake of argument that you have trouble remembering this formula. 
Well, you won’t forget it if you focus on why it’s true — which brings me to one 
of the most important tips in this book.

FIGURE 7-7:  
Triangle ABC 
with its three 

altitudes: BR , 
AS , and CT . 

© John Wiley & Sons, Inc.
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Whenever possible, don’t just memorize math concepts, formulas, and so on by 
rote. Try to understand why they’re true. When you grasp the whys underlying the 
ideas, you remember them better and develop a deeper appreciation of the 
 interconnections among mathematical ideas. That appreciation makes you a more 
successful math student.

So why does the area of a triangle equal 1
2

base height? Because the area of a 

rectangle is base height (which is the same thing as length width), and a  triangle 
is half of a rectangle.

Check out Figure 7-8, which shows two triangles inscribed in rectangles HALF  
and PINT.

It should be really obvious that HAF  has half the area of rectangle HALF. And it 
shouldn’t exactly give you a brain hemorrhage to see that PXT  also has half the 
area of the rectangle around it. (Triangle PXZ is half of rectangle PIXZ, and ZXT  
is half of rectangle ZXNT.) Because every possible triangle (including HAF , by 
the way, if you use AF  for its base) fits in some rectangle just like PXT  fits in 
rectangle PINT, every triangle is half a rectangle.

Now for a problem that involves finding the area of a triangle: What’s the length 
of altitude XT  in WXR in Figure 7-9?

FIGURE 7-8:  
A triangle takes 
up half the area 

of a rectangle. 
© John Wiley & Sons, Inc.

FIGURE 7-9:  
Right triangle 
WXR with its 

three altitudes. 
© John Wiley & Sons, Inc.
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The trick here is to note that because WXR is a right triangle, legs WX  and RX  are 
also altitudes. So you can use either one as the altitude, and then the other leg 
automatically becomes the base. Plug their lengths into the formula to determine 
the triangle’s area:

Area base heightWXR

RX WX

1
2
1
2
1
2

20 15

150

Now you can use the area formula again, using this area of 150, base WR, and 
 altitude XT :

Area base heightWXR

WR XT

XT

XT

1
2

150 1
2

150 1
2

25

12

Bingo.

A Heroic trick: The area formula  
almost no one knows
Hero’s Formula: When you know the length of a triangle’s three sides and you 
don’t know an altitude, Hero’s formula works like a charm. Check it out:

Area S S a S b S c ,

where a, b, and c are the lengths of the triangle’s sides and S is the triangle’s semi-

perimeter (that’s half the perimeter: S a b c
2

).

Let’s use Hero’s formula to calculate the area of a triangle with sides of length 5, 
6, and 7. First, you need the triangle’s perimeter (the sum of the lengths of its 
sides), and from that you get the semiperimeter. The perimeter is 5 6 7 18, so 
you get 9 for the semiperimeter. Now just plug 9, 5, 6, and 7 into the formula:

Area

 or about 14.7

9 9 5 9 6 9 7

9 4 3 2

36 6

6 6,
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NOW YOU SEE IT, NOW YOU DON’T
Put your thinking cap on — here’s a tough brainteaser for you. The first figure here is 
made up of four pieces. Below it, the same four pieces have been rearranged. But mys-
teriously, you get that extra little white square of area. How can the identical four pieces 
from the first figure not completely fill up the second figure? (Stop reading here if you 
want to work out the solution on your own.)

© John Wiley & Sons, Inc.

Third time’s the charm: The area of  
an equilateral triangle
You can get by without the formula for the area of an equilateral triangle because 
you can use the length of a side to calculate the altitude and then use the regular 
area formula (see the discussion of 30 60 90- -  triangles in Chapter 8). But this 
formula is nice to know because it gives you the answer in one fell swoop.

Area of an equilateral triangle (with side s):

Area Equilateral 
s2 3

4

You get a chance to see this formula in action in Chapters 12 and 14.

(continued)
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Locating the “Centers” of a Triangle
In this section, you look at four points associated with every triangle. One of these 
points is called the centroid, and the other three are called centers, but none of them 
is the “real” center of a triangle. Unlike circles, squares, and rectangles, triangles 
(except for equilateral triangles) don’t really have a true center.

Balancing on the centroid
Before I can define centroid, you first need the definition of another triangle term: 
median.

Median: A median of a triangle is a segment that goes from one of the triangle’s 
vertices to the midpoint of the opposite side. Every triangle has three medians. 
(You use the definition of median in some triangle proofs. See Chapter 9.)

Few people can solve this problem without any hints. (If you did, I’m very impressed. If 
not, read on for some hints and give it another try before reading the entire solution.) 
Take a look at the four pieces: the two triangles and those two sort of L-shaped pieces. 

The black triangle has a base of 8 and a height of 3, so its area is 1
2

8 3, or 12. The area  

of the dark gray triangle is 1
2

5 2, or 5. The two L-shaped pieces have areas of 7 and 8. 

That gives you a total of 32. But both big triangles have bases of 13 and heights of 5, so 
their areas are 32.5. What gives?

Here’s what gives: The two big “triangles” aren’t triangles at all — they’re quadrilaterals! 
Take the book in your hands, making sure this page is totally flat, close one eye, and 
turn the book so you can look along the “hypotenuse” of the first “triangle” — you know, 
so that the “hypotenuse” is sort of pointing right into your eye. If you look carefully, you 
should see that this “hypotenuse” has a very slight downward bend in it. This little 
depression explains why the four pieces add up to only 32. If not for this indentation (if 
the hypotenuse were straight), the total of the four pieces would have to be 32.5 — the 
area of a triangle with a base of 13 and height of 5. (If you can’t see the bend, try taking 
a ruler and lining it up with the two ends of the hypotenuse. If you do this very carefully, 
you should be able to see the extremely slight downward bend.)

The “hypotenuse” of the second “triangle” bends slightly upward. This upward bend cre-
ates the little extra room needed for the four pieces that total 32 plus the empty square 
that has an area of 1. This grand total of 33 square units fits in the bulging-out triangle 
that would have an area of 32.5 without the bulge. Pretty sneaky, eh?

(continued)
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Centroid: The three medians of a triangle intersect at its centroid. The centroid is 
the triangle’s balance point, or center of gravity.

On each median, the distance from the vertex to the centroid is twice as long as 
the distance from the centroid to the midpoint. Take a look at Figure 7-10.

X, Y, and Z are the midpoints of the sides of PQR ; RX , PY , and QZ  are the medi-
ans; and the medians intersect at point C, the centroid. If you take out a ruler (or 

just use your fingers), you can verify that the centroid is at the 1
3

 mark along, say, 

median PY  — in other words, CY  is 1
3

 as long as PY  (and CY  is therefore half as 
long as CP).

If you’re from Missouri (the Show-Me State), you might want to actually see how 
a triangle balances on its centroid. Cut a triangle of any shape out of a fairly stiff 
piece of cardboard. Carefully find the midpoints of two of the sides, and then draw 
the two medians to those midpoints. The centroid is where these medians cross. 
(You can draw in the third median if you like, but you don’t need it to find the 
centroid.) Now, using something with a small, flat top such as an unsharpened 
pencil, the triangle will balance if you place the centroid right in the center of the 
pencil’s tip.

A triangle’s centroid is probably as good a point as any to give you a rough idea of 
where its center is. The centroid is definitely a better candidate for a triangle’s 
center than the three “centers” I discuss in the next section.

FIGURE 7-10:  
Point C is 

PQR’s 
centroid. 

© John Wiley & Sons, Inc.
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AN INFINITE SERIES OF TRIANGLES
Check this out (this just dawned on me as I was writing this chapter): The triangle here  
is PQR  from Figure 7-10 with a new triangle added, XYZ . To get the new triangle,  
I simply connected the midpoints of the three sides.

© John Wiley & Sons, Inc.

It turns out that XYZ  is precisely the same shape as PQR  and has exactly 1
4

 its area. 

(Triangles — and other polygons — with the same shape are called similar; we get to 
that in Chapter 13.) And C, the centroid of PQR , is also the centroid of XYZ .

Now look at the same triangle again but with two more triangles added:

© John Wiley & Sons, Inc.

The next triangle, JKL, works the same way: It’s the same shape as XYZ  and takes 

up 1
4

 of XYZ ’s area, and C is its centroid.
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Finding three more “centers” of a triangle
In addition to a centroid, every triangle has three more “centers” that are located 
at the intersection of rays, lines, and segments associated with the triangle:

 » Incenter: The incenter is where a triangle’s three angle bisectors intersect (an 
angle bisector is a ray that cuts an angle in half); the incenter is the center of a 
circle inscribed in (drawn inside) the triangle.

 » Circumcenter: The circumcenter is where the three perpendicular bisectors of 
the sides of a triangle intersect (a perpendicular bisector is a line that forms a 
90  angle with a segment and cuts the segment in half); the circumcenter is 
the center of a circle circumscribed about (drawn around) the triangle.

 » Orthocenter: The orthocenter is where a triangle’s three altitudes intersect 
(see the earlier “Scaling altitudes” section for more on altitudes).

Investigating the incenter
You find a triangle’s incenter at the intersection of the triangle’s three angle 
bisectors. This location gives the incenter an interesting property: The incenter is 
equally far away from the triangle’s three sides. No other point has this quality. 
Incenters, like centroids, are always inside their triangles.

Figure 7-11 shows two triangles with their incenters and inscribed circles, or incircles 
(circles drawn inside the triangles so the circles barely touch the sides of each 
triangle). The incenters are the centers of the incircles. (Don’t talk about this stuff 
too much if you want to be in with the in-crowd.)

This pattern continues indefinitely. You end up with an infinite number of nested trian-
gles, all of the same shape and all having C as their centroid. Finally, despite the fact that 
you have an infinite number of triangles, their total area is not infinite; the total area of 

all the triangles is a mere 1 1
3

 times the area of PQR . Thus, if the area of PQR  is 3, 

the total area of the infinite series of triangles is only 4. (In case you’re wondering, find-
ing that answer involves calculus. Something to look forward to, right? Check out 
Calculus For Dummies, 2nd Edition — also written by me and published by Wiley — if you 
just can’t wait.)
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Spotting the circumcenter
You find a triangle’s circumcenter at the intersection of the perpendicular bisec-
tors of the triangle’s sides. This location gives the circumcenter an interesting 
property: The circumcenter is equally far away from the triangle’s three vertices.

FIGURE 7-11:  
Two triangles 

with their 
incenters. 

© John Wiley & Sons, Inc.

KEEPING THE CENTERS STRAIGHT
Each of the following four “centers” is paired up with the lines, rays, or segments that 
intersect at that center:

• Centroid — Medians

• Circumcenter — Perpendicular bisectors

• Incenter — Angle bisectors

• Orthocenter — Altitudes

The two “centers” that begin with a consonant pair up with terms that also begin with a 
consonant. And ditto for the two “centers” that begin with a vowel. Sweet, eh? Also, 
 “centroid” and “medians” are the only two words containing a double vowel (oi and ia); 
and “orthocenter” and “altitudes” are the only two terms with two t’s. This mnemonic 
may be a bit lame, but it’s better than nothing. If you can come up with a better one, use 
it! With this incredibly important information at your disposal, you’ll have something to 
talk about if you come to an awkward silence while out on a date. (And speaking of 
dates, another way to remember the list is to think about going out to the movies. When 
you alphabetize the four centers on the left, the initial letters of the terms on the right 
form the acronym for the Motion Picture Association of America.)
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Figure 7-12 shows two triangles with their circumcenters and circumscribed circles, 
or circumcircles (circles drawn around the triangles so that the circles go through 
each triangle’s vertices). The circumcenters are the centers of the circumcircles. 
(Note: In case you’re curious, a circumcircle, in addition to being circumscribed 
about a triangle, is also circumambient and circumjacent to the triangle; but 
maybe I’m getting a bit carried away with this circumlocutory circumlocution.)

You can see in Figure 7-12 that, unlike centroids and incenters, a circumcenter is 
sometimes outside the triangle. The circumcenter is

 » Inside all acute triangles

 » Outside all obtuse triangles

 » On all right triangles (at the midpoint of the hypotenuse)

Obtaining the orthocenter
Check out Figure 7-13 to see a couple of orthocenters. You find a triangle’s ortho-
center at the intersection of its altitudes. Unlike the centroid, incenter, and 
 circumcenter — all of which are located at an interesting point of the triangle (the 
triangle’s center of gravity, the point equidistant from the triangle’s sides, and 
the point equidistant from the triangle’s vertices, respectively), a triangle’s 
orthocenter doesn’t lie at a point with any such nice characteristics. Well, three 
out of four ain’t bad.

But get a load of this: Look again at the triangles in Figure 7-13. Take the four 
labeled points of either triangle (the three vertices plus the orthocenter). If you 
make a triangle out of any three of those four points, the fourth point is the ortho-
center of that triangle. Pretty sweet, eh?

FIGURE 7-12:  
Two triangles 

with their 
circumcenters. 

© John Wiley & Sons, Inc.
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Orthocenters follow the same rule as circumcenters (note that both orthocenters 
and circumcenters involve perpendicular lines — altitudes and perpendicular 
bisectors): The orthocenter is

 » Inside all acute triangles

 » Outside all obtuse triangles

 » On all right triangles (at the right angle vertex)

FIGURE 7-13:  
Two triangles 

with their 
orthocenters. 

© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Poring over the Pythagorean 
Theorem

Playing with Pythagorean triples and 
families

Reasoning about angle ratios: 
45 45 90- -  and 30 60 90- -  triangles

Regarding Right 
Triangles

In the mathematical universe of all possible triangles, right triangles are 
extremely rare (see Chapter 7). But in the so-called real world, right angles — 
and therefore right triangles — are extremely common. Right angles are every-

where: the corners of almost every wall, floor, ceiling, door, window, and wall 
hanging; the corners of every book, table, box, and piece of paper; the intersection 
of most streets; the angle between the height of anything (a building, tree, or 
mountain) and the ground — not to mention the angle between the height and 
base of any two- or three-dimensional geometrical figure. The list is endless. And 
everywhere you see a right angle, you potentially have a right triangle. Right tri-
angles abound in navigation, surveying, carpentry, and architecture — even the 
builders of the Great Pyramids in Egypt used right-triangle mathematics.

Another reason for the abundance of right triangles between the covers of geom-
etry books is the simple connection between the lengths of their sides. Because of 
this connection, right triangles are a great source of geometry problems. In this 
chapter, I show you how right triangles pull their weight.

Chapter 8
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Applying the Pythagorean Theorem
The Pythagorean Theorem has been known for at least 2,500 years (I say at least 
because no one really knows whether someone else discovered it before Pythago-
ras did).

You use the Pythagorean Theorem when you know the lengths of two sides of a 
right triangle and you want to figure out the length of the third side.

The Pythagorean Theorem: The Pythagorean Theorem states that the sum of the 
squares of the legs of a right triangle is equal to the square of the hypotenuse:

a b c2 2 2

Here, a and b are the lengths of the legs and c is the length of the hypotenuse. The 
legs are the two short sides that touch the right angle, and the hypotenuse (the 
longest side) is opposite the right angle.

Figure 8-1 shows how the Pythagorean Theorem works for a right triangle with 
legs of 3 and 4 and a hypotenuse of 5.

Try your hand at the following three problems, which use the Pythagorean Theo-
rem. They get harder as you go along.

Here’s the first (Figure 8-2): On your walk to work, you can walk around a park or 
diagonally across it. If the park is 2 blocks by 3 blocks, how much shorter is your 
walk if you take the shortcut through the park?

PYTHAGORAS AND THE MATHEMATIKOI 
GANG
By all accounts, Pythagoras (born on the Greek island of Samos in about 575 B.C.; died 
circa 500 B.C.) was a great mathematician and thinker. He did original work in mathe-
matics, philosophy, and music theory. However, he and his followers, the mathematikoi, 
were more than a bit on the strange side. Unlike his famous theorem, some of the rules 
that the members of his society followed haven’t exactly stood the test of time: not to 
eat beans, not to stir a fire with an iron poker, not to step over a crossbar, not to pick up 
what has fallen, not to look in a mirror next to a light, and not to touch a white rooster.
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You have a right triangle with legs of 2 and 3 blocks. Plug those numbers into the 
Pythagorean Theorem to calculate the length of the shortcut that runs along the 
triangle’s hypotenuse:

2 3

4 9

13

13 3 6

2 2 2

2

2

c

c

c

c .  blocks

That’s the length of the shortcut. Going around the park is 2 3 5 blocks, so the 
shortcut saves you about 1.4 blocks.

Here’s a problem of medium difficulty. It’s a multi-stage problem in which you 
have to use the Pythagorean Theorem more than once. In Figure 8-3, find x and 
the area of hexagon ABCDEF.

FIGURE 8-1:  
The Pythagorean 

Theorem is as 
easy as 

9 16 25. 
© John Wiley & Sons, Inc.

FIGURE 8-2:  
Finding the 

diagonal of a 
rectangle with the 

Pythagorean 
Theorem — it’s a 
walk in the park. 

© John Wiley & Sons, Inc.
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ABCDEF is made up of four connected right triangles, each of which shares at least 
one side with another triangle. To get x, you set up a chain reaction in which you 
solve for the unknown side of one triangle and then use that answer to find the 
unknown side of the next triangle — just use the Pythagorean Theorem four times. 
You already know the lengths of two sides of BAF , so start there to find BF:

BF AF AB

BF

BF

BF

2 2 2

2 2 2

2

1 2

5

5

Now that you have BF, you know two of the sides of CBF . Use the Pythagorean 
Theorem to find CF:

CF BF BC

CF

CF

CF

2 2 2

2 2 2

2

5 3

5 9

14

With CF filled in, you can find the short leg of ECF :

CE CF FE

CE

CE

CE

CE

2 2 2

2 2 2

2

2

14 5

14 25

11

11

FIGURE 8-3:  
A funny-looking 
hexagon made 

up of right 
triangles. 

© John Wiley & Sons, Inc.
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And now that you know CE, you can solve for x:

x CE ED

x

x

x

x

2 2 2

2 2 2

2

2

11 5

11 25

36

6

Okay, on to the second half of the problem. To get the area of ABCDEF, just add up 

the areas of the four right triangles. The area of a triangle is 1
2

base height. For a 

right triangle, you can use the two legs for the base and the height. Solving for x 
has already given you the lengths of all the sides of the triangles, so just plug the 
numbers into the area formula:

Area Area

Area

BAF CBF

ECF

1
2

1 2

1

1
2

5 3

1 5 5

1
2

11 14

0 5

.

. 1154

1
2

11 5

2 5 11

Area DCE

.

Thus, the area of hexagon ABCDEF is 1 1 5 5 0 5 154 2 5 11. . . , or about 18.9 
units2.

And now for a more challenging problem. For this one, you need to solve a system of 
two equations in two unknowns. Dust off your algebra and get ready to go. Here’s the 
problem: Find the area of FAC  in Figure  8-4 using the standard triangle area 
formula, not Hero’s formula, which would make this challenge problem much easier; 
then use Hero’s formula to confirm your answer (see Chapter 7 for both formulas).

FIGURE 8-4:  
The altitude is 

also the shared 
leg of two right 

triangles —  
it’s a FACT. 

© John Wiley & Sons, Inc.
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You already know the length of the base of FAC , so to find its area, you need to 
know its altitude. The altitude forms right angles with the base of FAC , so you 
have two right triangles: FAT  and CAT . If you can find the length of the bottom 
leg of either one of these triangles, you can use the Pythagorean Theorem to find 
the height.

You know that FT and TC add up to 14. So if you let FT equal x, TC becomes 14 x . 
You now have two variables in the problem, h and x. If you use the Pythagorean 
Theorem for both triangles, you get a system of two equations in two unknowns:

FAT h x

h x

CAT h x

h x x

:

:

2 2 2

2 2

2 2 2

2 2

13

169

14 15

196 28 2255

28 292 2h x x

To solve this system, you first need to come up with a single equation in one 
unknown. You can do this with the substitution method. Take the final FAT equa-
tion and solve it for h2:

FAT h x

h x

: 2 2

2 2

169

169

Now take the right side of that equation and plug it in for the h2 in the final CAT 
equation. This substitution gives you a single equation in x, which you can then 
solve:

CAT h x x

x x x

x

x

x

: 2 2

2 2

28 29

169 28 29

169 28 29

28 140

5

Did you notice the nifty shortcut for solving this system? (I went through the lon-
ger, standard solution because this shortcut rarely works.) The FAT equation tells 
you that h x2 2 169. Because the final CAT equation also contains an h x2 2, you 
can just replace that expression with 169, giving you 169 28 29x . You finish 
from there like I just did. (By the way, ideally you’d like to solve for h instead of x 
because h is the thing you need to finish the problem; here, however, that’d involve 
square roots and get too complicated, so solving for x first is your best bet.)



CHAPTER 8  Regarding Right Triangles      113

So now just plug 5 into the x in the first FAT equation (or the first CAT equation, 
though the FAT equation is simpler) and solve for h:

h x

h

h

h

2 2

2 2

2

2

169

5 169

144

12 12  (you can reject the )

Finally, finish with the area formula:

Area

 units

FAC bh1
2
1
2

14 12

84 2

Now confirm this result with Hero’s formula: Area S S a S b S c . 

You can say that a 13, b 14, and c 15 (it doesn’t matter which is which), and 

then S 13 14 15
2

21. Thus,

Area

 units

FAC 21 21 13 21 14 21 15

21 8 7 6

7 056

84 2

,

The answer checks.

Perusing Pythagorean Triple Triangles
If you use any old numbers for two sides of a right triangle, the Pythagorean 
Theorem almost always gives you the square root of something for the third side. 
For example, a right triangle with legs of 5 and 6 has a hypotenuse of 61; if the 
legs are 3 and 8, the hypotenuse is 73 ; and if one of the legs is 6 and the hypot-
enuse is 9, the other leg works out to 81 36, which is 45, or 3 5 .

A Pythagorean triple triangle is a right triangle with sides whose lengths are all 
whole numbers, such as 3, 4, and 5 or 5, 12, and 13. People like to use these tri-
angles in problems because they don’t contain those pesky square roots. Despite 
there being an infinite number of such triangles, they’re few and far between (like 
the fact that multiples of 100 are few and far between the other integers, even 
though there are an infinite number of these multiples).
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The Fab Four Pythagorean triple triangles
The first four Pythagorean triple triangles are the favorites of geometry problem-
makers. These triples — especially the first and second in the list that follows — 
pop up all over the place in geometry books. (Note: The first two numbers in each 
of the triple triangles are the lengths of the legs, and the third, largest number is 
the length of the hypotenuse).

Here are the first four Pythagorean triple triangles:

 » The 3 4 5- -  triangle

 » The 5 12 13- -  triangle

 » The 7 4 5-2 -2  triangle

 » The 8 15 17- -  triangle

You’d do well to memorize these Fab Four so you can quickly recognize them on tests.

Forming irreducible Pythagorean triple triangles
As an alternative to counting sheep some night, you may want to see how many 
other Pythagorean triple triangles you can come up with.

The first three on the previous list follow a pattern. Consider the 5 12 13- -  triangle, 
for example. The square of the smaller, odd leg (5 252 ) is the sum of the longer 
leg and the hypotenuse (12 13 25). And the longer leg and the hypotenuse are 
always consecutive numbers. This pattern makes it easy to generate as many more 
triangles as you want. Here’s what you do:

1. Take any odd number and square it.

9 812 , for example

2. Find the two consecutive numbers that add up to this value.

40 41 81

You can often just come up with the two numbers off the top of your head, but 
if you don’t see them right away, just subtract 1 from the result in Step 1 and 
then divide that answer by 2:

81 1
2

40

That result and the next larger number are your two numbers.
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3. Write the number you squared and the two numbers from Step 2 in consecu-
tive order to name your triple.

You now have another Pythagorean triple triangle: 9-40-41.

Here are the next few Pythagorean triple triangles that follow this pattern:

 » 11 60 61 11 121 60 61 1212- -  ;

 » 13 84 85 13 169 84 85 1692- -  ;

 » 15 15 225 112 113 2252-112-113     ;

This list is endless — capable of dealing with the worst possible case of insomnia. 
And note that each triangle on this list is irreducible; that is, it’s not a multiple of 
some smaller Pythagorean triple triangle (in contrast to the 6- -8 10 triangle, for 
example, which is not irreducible because it’s the 3 4 5- -  triangle doubled).

When you make a new Pythagorean triple triangle (like the 6- -8 10) by blowing up 
a smaller one (the 3 4 5- - ), you get triangles with the exact same shape. But every 
irreducible Pythagorean triple triangle has a shape different from all the other 
irreducible triangles.

A new pattern: Forming further Pythagorean 
triple triangles
The 8 15 17- -  triangle is the first Pythagorean triple triangle that doesn’t follow the 
pattern I mention in the preceding section. Here’s how you generate triples that 
follow the 8 15 17- -  pattern:

1. Take any multiple of 4.

Say you choose 12.

2. Square half of it.

12 2 6 36
2 2

3. Take the number from Step 1 and the two odd numbers on either side of the 
result in Step 2 to get a Pythagorean triple triangle.

12 35 37- -
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The next few triples in this infinite set are

 » 16 63 65 16 2 8 8 64 63 652- -    ; ; ,

 » 20 99 101 20 2 10 10 100 99 1012- -    ; ; ,

 » 24 143 145 24 2 12 144 3 52- -  12  14  14; ; ,

By the way, you can use this process for the other even numbers (the non-multiples 
of 4) such as 10, 14, 18, and so on. But you get a triangle such as the 10- -24 26 tri-
angle, which is the 5 12 13- -  Pythagorean triple triangle blown up to twice its size, 
rather than an irreducible, uniquely-shaped triangle.

Families of Pythagorean triple triangles
Each irreducible Pythagorean triple triangle such as the 5 12 13- -  triangle is the 
matriarch of a family with an infinite number of children. The 3 4 5: :  family (note 
the colons), for example, consists of the 3 4 5- -  triangle and all her offspring. Off-
spring are created by blowing up or shrinking the 3 4 5- -  triangle: They include the 
3

100
4

100
5

100- -  triangle, the 6 8 10- -  triangle, the 21 28 5- -3  triangle (3 4 5- -  times 7), 
and their eccentric siblings such as the 3 11 4 11 5 11- -  triangle and the 3 4 5- -  
triangle. All members of the 3 4 5: :  family — or any other triangle family — have 
the same shape as the other triangles in their family (they’re similar — see 
 Chapter 13 for more on similarity).

When you know only two of the three sides of a right triangle, you can compute 
the third side with the Pythagorean Theorem. But if the triangle happens to be a 
member of one of the Fab Four Pythagorean triple triangle families — and you’re 
able to recognize that fact — you can often save yourself some time and effort (see 
“The Fab Four Pythagorean triple triangles”). All you need to do is figure out the 
blow-up or shrink factor that converts the main Fab Four triangle into the given 
triangle and use that factor to compute the missing side of the given triangle.

No-brainer cases
You can often just see that you have one of the Fab Four families and figure out the 
blow-up or shrink factor in your head. Check out Figure 8-5.

In Figure 8-5a, the digits 8 and 17 in the 0.08 and 0.17 should give you a big hint 
that this triangle is a member of the 8 15 17: :  family. Because 8 divided by 100 is 
0.08 and 17 divided by 100 is 0.17, this triangle is an 8 15 17- -  triangle shrunk down 
100 times. Side j is thus 15 divided by 100, or 0.15. Bingo. This shortcut is definitely 
easier than using the Pythagorean Theorem.
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Likewise, the digits 3 and 4 should make it a dead giveaway that the triangle in 
Figure 8-5b is a member of the 3 4 5: :  family. Because 3 7  is 7  times 3 and 4 7 
is 7  times 4, you can see that this triangle is a 3 4 5- -  triangle blown up by a factor 
of 7 . Thus, side r is simply 7  times 5, or 5 7 .

Make sure the sides of the given triangle match up correctly with the sides of the 
Fab Four triangle family you’re using. In a 3 4 5: :  triangle, for example, the legs 
must be the 3 and the 4, and the hypotenuse must be the 5. So a triangle with legs 
of 30 and 50 (despite the 3 and the 5) is not in the 3 4 5: :  family because the 50 
(the 5) is one of the legs instead of the hypotenuse.

The step-by-step triple triangle method
If you can’t immediately see what Fab Four family a triangle belongs to, you can 
always use the following step-by-step method to pick the family and find the 
missing side. Don’t be put off by the length of the method; it’s easier to do than to 
explain. I use the triangle in Figure 8-6 to illustrate this process.

1. Take the two known sides and make a ratio (either in fraction form or 
colon form) of the smaller to the larger side.

Take the 24
5

 and the 6 and make the ratio of 
24

5
6

.

FIGURE 8-5:  
Two triangles 
from famous 

families. 
© John Wiley & Sons, Inc.

FIGURE 8-6:  
Use a ratio to 

figure out what 
family this 

triangle 
belongs to. 

© John Wiley & Sons, Inc.
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2. Reduce this ratio to whole numbers in lowest terms.

If you multiply the top and bottom of 
24

5
6

 by 5, you get 24
30

; that reduces to 4
5

. 

(With a calculator, this step is a snap because many calculators have a function 
that reduces fractions to lowest terms.)

3. Look at the fraction from Step 2 to spot the particular triangle family.

The numbers 4 and 5 are part of the 3 4 5- -  triangle, so you’re dealing with the 
3 4 5: :  family.

4. Divide the length of a side from the given triangle by the corresponding 
number from the family ratio to get your multiplier (which tells you how 
much the basic triangle has been blown-up or shrunk).

Use the length of the hypotenuse from the given triangle (because working 
with a whole number is easier) and divide it by the 5 from the 3 4 5: :  ratio. 
You should get 6

5
 for your multiplier.

5. Multiply the third family number (the number you don’t see in the reduced 
fraction in Step 2) by the result from Step 4 to find the missing side of your 
triangle.

Three times 6
5

 is 18
5

. That’s the length of side p; and that’s a wrap.

You may be wondering why you should go through all this trouble when you could 
just use the Pythagorean Theorem. Good point. The Pythagorean Theorem is easier 
for some triangles (especially if you’re allowed to use your calculator). But — take 
my word for it — this triple triangle technique can come in handy. Take your pick.

Getting to Know Two Special 
Right Triangles

Make sure you know the two right triangles in this section: the 45 45 90- -   triangle 
and the 30 60 90- -  triangle. They come up in many, many geometry problems, 
not to mention their frequent appearance in trigonometry, pre-calculus, and cal-
culus. Despite the pesky irrational (square-root) lengths they have for some of 
their sides, they’re both more basic and more important than the Pythagorean 
triple triangles I discuss earlier. They’re more basic because they’re the progeny 
of the square and equilateral triangle, and they’re more important because their 
angles are nice fractions of a right angle.
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The 45°- 45°- 90° triangle — half a square
The 45 45 90- -  triangle (or isosceles right triangle): The 45 45 90- -  triangle is 
a triangle with angles of 45 , 45 , and 90  and sides in the ratio of 1 1 2: : . Note 
that it’s the shape of half a square, cut along the square’s diagonal, and that it’s 
also an isosceles triangle (both legs have the same length). See Figure 8-7.

Try a couple of problems. Find the lengths of the unknown sides in triangles BAT 
and BOY shown in Figure 8-8.

You can solve 45 45 90- -  triangle problems in two ways: the formal book method 
and the street-smart method. Try ’em both and take your pick. The formal method 
uses the ratio of the sides from Figure 8-7.

leg leg hypotenuse: :

: :x x x 2

For BAT , because one of the legs is 8, the x in the ratio is 8. Plugging 8 into the 
three x’s gives you

leg leg hypotenuse: :

: :8 8 8 2

FIGURE 8-7:  
The 45 45 90- -  

triangle. 

© John Wiley & Sons, Inc.

FIGURE 8-8:  
Find the missing 

lengths. 

© John Wiley & Sons, Inc.
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And for BOY , the hypotenuse is 10, so you set the x 2  from the ratio equal to 10 
and solve for x:

x

x

2 10

10
2

10
2

2
2

10 2
2

5 2

That does it:

leg leg hypotenuse: :

: :5 2 5 2 10

Now for the street-smart method for working with the 45 45 90- -  triangle (the 
street-smart method is based on the same math as the formal method, but it 
involves fewer steps): Remember the 45 45 90- -  triangle as the “ 2 triangle.” 
Using that tidbit, do one of the following:

 » If you know a leg and want to compute the hypotenuse (a longer thing), you 
multiply by 2. In Figure 8-8, one of the legs in BAT  is 8, so you multiply that 
by 2 to get the longer hypotenuse: 8 2 .

 » If you know the hypotenuse and want to compute the length of a leg 
(a shorter thing), you divide by 2. In Figure 8-8, the hypotenuse in BOY   
is 10, so you divide that by 2 to get the shorter legs; they’re each 10

2
.

Look back at the lengths of the sides in BAT  and BOY . In BAT , the hypote-
nuse is the only side that contains a radical. In BOY , the hypotenuse is the only 
side without a radical. These two cases (one or two sides with radical symbols) are 
by far the most common ones, but in unusual cases, all three sides may contain a 
radical symbol.

However, you will never see a 45 45 90- -  triangle with no radical symbols. This 
situation would be possible only if the 45 45 90- -  triangle were a member of one 
of the Pythagorean triple families — which it isn’t (see the earlier “Perusing 
Pythagorean Triple Triangles” section). The sidebar “Close but no cigar: Special 
right triangles and Pythagorean triples” in the following section tells you more 
about this interesting fact.

The 30°- 60°- 90° triangle —  
half of an equilateral triangle
The 30 60 90- -  triangle: The 30 60 90- -  triangle is a triangle with angles of 30 , 
60 , and 90  and sides in the ratio of 1 3 2: : . Note that it’s the shape of half an 
equilateral triangle, cut straight down the middle along its altitude. Check out 
Figure 8-9.
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Get acquainted with this triangle by doing a couple of problems. Find the lengths 
of the unknown sides in UMP  and IRE  in Figure 8-10.

You can solve 30 60 90- -  triangles with the textbook method or the street-smart 
method. The textbook method begins with the ratio of the sides from Figure 8-9:

short leg long leg hypotenuse: :

: :x x x3 2

In UMP , the hypotenuse is 10, so you set 2x  equal to 10 and solve for x, getting 
x 5. Now just plug 5 in for the x’s, and you have UMP :

short leg long leg hypotenuse: :

: :5 5 3 10

In IRE , the long leg is 9, so set x 3  equal to 9 and solve:

x

x

3 9

9
3

9
3

3
3

9 3
3

3 3

FIGURE 8-9:  
The 30 60 90- -  

triangle. 

© John Wiley & Sons, Inc.

FIGURE 8-10:  
Find the missing 

lengths. 

© John Wiley & Sons, Inc.
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Plug in the value of x, and you’re done:

short leg long leg hypotenuse: :

: :

: :

3 3 3 3 3 2 3 3

3 3 9 6 3

Here’s the street-smart method for the 30 60 90- -  triangle. (It’s slightly more 
involved than the method for the 45 45 90- -  triangle.) Think of the 30 60 90- -  
triangle as the “ 3  triangle.” Using that fact, do the following:

 » The relationship between the short leg and the hypotenuse is a no-brainer: 
The hypotenuse is twice as long as the short leg. So if you know one of them, 
you can get the other in your head. The 3  method mainly concerns the 
connection between the short and long legs.

 » If you know the short leg and want to compute the long leg (a longer thing), 
you multiply by 3 . If you know the long leg and want to compute the length 
of the short leg (a shorter thing), you divide by 3 .

Try out the street-smart method with the triangles in Figure 8-10. The hypote-
nuse in UMP  is 10, so first you cut that in half to get the length of the short leg, 
which is thus 5. Then to get the longer leg, you multiply that by 3 , which gives you 
5 3 . In IRE , the long leg is 9, so to get the shorter leg, you divide that by 3 , 
which gives you 9

3
, or 3 3 . The hypotenuse is twice that, 6 3 .

Just like with 45 45 90- -  triangles, 30 60 90- -  triangles almost always have one 
or two sides whose lengths contain a square root. But with 30 60 90- -  triangles, 
the long leg is the odd one out (almost always, the long leg is either the only side 
containing a square root or the only side not containing a square root). And also 
like 45 45 90- -  triangles, all three sides of a 30 60 90- -  triangle could contain 
square roots, but it’s impossible that none of the sides would — which brings me 
to the following warning.

Because at least one side of a 30 60 90- -  triangle must contain a square root, a 
30 60 90- -  triangle cannot belong to any of the Pythagorean triple triangle fami-
lies. So don’t make the mistake of thinking that a 30 60 90- -  triangle is in, say, 
the 8 15 17: :  family or that any triangle that is in one of the Pythagorean triple 
triangle families is also a 30 60 90- -  triangle. There’s no overlap between the 
30 60 90- -  triangle (or the 45 45 90- -  triangle) and any of the Pythagorean triple 
triangles and their families. The sidebar “Close but no cigar: Special right trian-
gles and Pythagorean triples” tells you more about this important idea.
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CLOSE BUT NO CIGAR: SPECIAL RIGHT 
TRIANGLES AND PYTHAGOREAN TRIPLES
You can find a Pythagorean triple triangle that’s as close as you like to the shape of a 
30 60 90- - , but you’ll never find a perfect match.

© John Wiley & Sons, Inc.

There’s no limit to how close you can get. The same thing is true for the 45 45 90- -  
 triangle. No Pythagorean triple triangle matches the shape of a 45 45 90- -  
 triangle exactly, but you can get awfully darn close. There’s the oh-so-familiar 
803 760 803 761 1 136 689, , , ,- -  right triangle, for example, whose legs are in the ratio 
of about 1 1 0000012: . . That makes it almost isosceles but, of course, not a 
45 45 90- -  isosceles right triangle.
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IN THIS CHAPTER

Proving triangles congruent with SSS, 
SAS, ASA, AAS, and HLR

CPCTC: Focusing on parts of 
congruent triangles

Addressing the two isosceles triangle 
theorems

Finding perpendicular bisectors and 
congruent segments with the 
equidistance theorems

Taking a different tack with indirect 
proofs

Completing 
Congruent Triangle 
Proofs

You’ve arrived at high school geometry’s main event: triangle proofs. The 
proofs in Chapters  4,  5, and  6 are complete proofs that show you how 
proofs work, and they illustrate many of the most important proof strate-

gies. But on the other hand, they’re sort of just warm-up or preliminary proofs 
that lay the groundwork for the real, full-fledged triangle proofs you see in this 
chapter. Here, I show you how to prove triangles congruent, work with congruent 
parts of triangles, and use the incredibly important isosceles triangle theorems. 
I also explain the somewhat peculiar logic involved in indirect proofs.

Chapter 9
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Introducing Three Ways to  
Prove Triangles Congruent

Actually, you can prove triangles congruent in five ways, but I think overindulging 
should be confined to holidays such as Thanksgiving and Pi Day (March 14). So 
that you can enjoy your proofs in moderation, I give you just the first three ways 
here and the final two in the brilliantly titled section that follows later: “Trying 
Out Two More Ways to Prove Triangles Congruent.”

Congruent triangles: Congruent triangles are triangles in which all pairs of 
 corresponding sides and angles are congruent.

Maybe the best way to think about what it means for two triangles (or any other 
shapes) to be congruent is that you could move them around (by shifting, rotating, 
and/or flipping them) so that they’d stack perfectly on top of one another.

You indicate that triangles are congruent with a statement such as ABC XYZ ,  
which means that vertex A (the first letter) corresponds with and would stack on 
vertex X (the first letter), B would stack on Y, and C would stack on Z. Side AB 
would stack on side XY , B would stack on Y , and so on.

Figure 9-1 shows two congruent triangles in any old configuration (on the left) 
and then aligned. The triangles on the left are congruent, but the statement 

ABC PQR is false. Visualize how you’d have to move PQR  to align it with 
ABC  — you’d have to flip it over and then rotate it. On the right, I’ve moved 
PQR so that it lines up perfectly with ABC . And there you have it: ABC RQP. 

All corresponding parts of the triangles are congruent: AB RQ, BC QP , 
C P , and so on.

FIGURE 9-1:  
Check out  

how these two 
congruent 

triangles  
stack up. 

© John Wiley & Sons, Inc.
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SSS: Using the side-side-side method
SSS (Side-Side-Side): The SSS postulate states that if the three sides of one tri-
angle are congruent to the three sides of another triangle, then the triangles are 
congruent. Figure 9-2 illustrates this idea.

You can use the SSS postulate in the following “TRIANGLE” proof:

Given:

 is the midpoint of 

 is the 

AG EG

NG LG

AR ET

NI LI

T NI

R mmidpoint of 

Prove:

LI

ANT ELR  
© John Wiley & Sons, Inc.

Before you begin writing a formal proof, figure out your game plan. Here’s how 
that may work.

You know you have to prove the triangles congruent, so your first question should 
be “Can you show that the three pairs of corresponding sides are congruent?” Sure, 
you can do that:

 » Subtract NG and LG from AG and EG  to get the first pair of congruent sides,  
AN  and EL.

 » Subtract TR from AR and ET  to get the second pair of congruent sides, AT  
and ER.

 » Cut congruent segments NI  and LI  in half to get the third pair, NT  and LR. That’s it.

FIGURE 9-2:  
Triangles with 

congruent sides 
are congruent. 

© John Wiley & Sons, Inc.
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To make the game plan more tangible, you may want to make up lengths for the vari-
ous segments. For instance, say AG and EG are 9, NG and LG are 3, AR and ET are 8, 
TR is 3, and NI and LI are 8. When you do the math, you see that ANT  and ELR  both 
end up with sides of 4, 5, and 6, which means, of course, that they’re congruent.

Here’s how the formal proof shapes up:

© John Wiley & Sons, Inc.

Note: After SSS in the final step, I indicate the three lines from the statement column 
where I’ve shown the three pairs of sides to be congruent. You don’t have to do 
this, but it’s a good idea. It can help you avoid some careless mistakes. Remember 
that each of the three lines you list must show a congruence of segments (or angles, 
if you’re using one of the other approaches to proving triangles congruent).

SAS: Taking the side-angle-side approach
SAS (Side-Angle-Side): The SAS postulate says that if two sides and the included 
angle of one triangle are congruent to two sides and the included angle of another 
triangle, then the triangles are congruent. (The included angle is the angle formed 
by the two sides.) Figure 9-3 illustrates this method.
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Check out the SAS postulate in action:

Given:  is isosceles with base 

Prove:

QZX QX

JQ XF

JZX

1 2

FFZQ  
© John Wiley & Sons, Inc.

When overlapping triangles muddy your understanding of a proof diagram, try 
redrawing the diagram with the triangles separated. Doing so can give you a 
clearer idea of how the triangles’ sides and angles relate to each other. Focusing 
on your new diagram may make it easier to figure out what you need to do to prove 
the triangles congruent. However, you still need to use the original diagram to 
understand some parts of the proof, so use the second diagram as a sort of aid to 
get a better handle on the original diagram.

Figure  9-4 shows you what this proof diagram looks like with the triangles 
separated.

FIGURE 9-3:  
The congruence 

of two pairs of 
sides and the 

angle between 
them make these 

triangles 
congruent. 

© John Wiley & Sons, Inc.

FIGURE 9-4:  
An amicable 

separation of 
triangles. 

© John Wiley & Sons, Inc.
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Looking at Figure 9-4, you can easily see that the triangles are congruent (they’re 
mirror images of each other). You also see that, for example, side ZX  corresponds 
to side ZQ and that X  corresponds to Q.

So using both diagrams, here’s a possible game plan:

 » Determine which congruent triangle postulate is likely to be the ticket 
for proving the triangles congruent. You know you have to prove the 
triangles congruent, and one of the givens is about angles, so SAS looks like a 
better candidate than SSS for the final reason. (You don’t have to figure this 
out now, but it’s not a bad idea to at least have a guess about the final reason.)

 » Look at the givens and think about what they tell you about the triangles. 
Triangle QZX is isosceles, so that tells you ZQ ZX . Look at these sides in both 
figures. Put tick marks on ZQ and ZX  in Figure 9-4 to show that you know they’re 
congruent. Now consider why they’d tell you the next given, JQ XF . Well, what if 
they were both 6 and QX  were 2? JX and QF  would both be 8, so you have a second 
pair of congruent sides. Put tick marks on Figure 9-4 to show this congruence.

 » Find the pair of congruent angles. Look at Figure 9-4 again. If you can show 
that X  is congruent to Q, you’ll have SAS. Do you see where X  and Q 
(from Figure 9-4) fit into the original diagram? Note that they’re the supple-
ments of 1 and 2. That does it. Angles 1 and 2 are congruent, so their 
supplements are congruent as well. (If you fill in numbers, you can see that if 

1 and 2 were both 100 , Q and X  would both be 80 .)

Here’s the formal proof:

© John Wiley & Sons, Inc.
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ASA: Taking the angle-side-angle tack
ASA (Angle-Side-Angle): The ASA postulate says that if two angles and the included 
side of one triangle are congruent to two angles and the included side of another 
triangle, then the triangles are congruent. (The included side is the side between the 
vertices of the two angles.) See Figure 9-5.

Here’s a congruent-triangle proof with the ASA postulate:

Given:  is the midpoint of

 bisects 

E NO

SNW TOA

NW SNE

O

� ����

AA TOE

SNE TOE

� ���
 bisects 

Prove:  
© John Wiley & Sons, Inc.

Here’s my game plan:

 » Note any congruent sides and angles in the diagram. First and foremost, 
notice the congruent vertical angles (I introduce vertical angles in Chapter 2). 
Vertical angles are important in many proofs, so you can’t afford to miss them. 
Next, midpoint E gives you NE OE . So now you have a pair of congruent 
angles and a pair of congruent sides.

 » Determine which triangle postulate you need to use. To finish with 
SAS, you’d need to show SE TE; and to finish with ASA, you’d need 

SNE TOE . A quick glance at the bisected angles in the givens  

FIGURE 9-5:  
The congruence 

of two pairs of 
angles and the 

side between 
them make these 

triangles 
congruent. 

© John Wiley & Sons, Inc.
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(or the title of this section, but that’s cheating!) makes the second alternative 
much more likely. Sure enough, you can get SNE TOE  because a given 
says that half of SNE  ( SNW ) is congruent to half of TOE  ( TOA). 
That’s a wrap.

Here’s how the formal proof plays out:

© John Wiley & Sons, Inc.

STICKING TO THE BASICS: THE WORKINGS 
BEHIND SSS, SAS, AND ASA
The idea behind the SSS postulate is pretty simple. Say you have three sticks of given 
lengths (how about 5, 7, and 9 inches?) and then you make a triangle out of them. Now 
you take three more sticks of the same lengths and make a second triangle. No matter 
how you connect the sticks, you end up with two triangles of the exact same size and 
shape — in other words, two congruent triangles.

Maybe you’re thinking, “Of course if you make two triangles using the same-length sticks 
for both, you’ll end up with two triangles of the same size and shape. What’s the point?” 
Well, maybe it is sort of obvious, but this principle doesn’t hold for polygons of four or 
more sides. If you take, for example, four sticks of 4, 5, 6, and 7 inches, there’s no limit to 
the number of differently shaped quadrilaterals you can make. Try it.
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CPCTC: Taking Congruent Triangle  
Proofs a Step Further

In the preceding section, the relatively short proofs end with showing that two 
triangles are congruent. But in more-advanced proofs, showing triangles congru-
ent is just a stepping stone for going on to prove other things. In this section, you 
take proofs a step further.

Proving triangles congruent is often the focal point of a proof, so always check the 
proof diagram for all pairs of triangles that look like they’re the same shape and 
size. If you find any, you’ll very likely have to prove one (or more) of the pairs of 
triangles congruent.

Defining CPCTC
CPCTC: CPCTC is an acronym for corresponding parts of congruent triangles are 
 congruent. This idea sort of has the feel of a theorem, but it’s really just the definition 
of congruent triangles.

Because congruent triangles have six pairs of congruent parts (three pairs of seg-
ments and three pairs of angles) and you need three of the pairs for SSS, SAS, or 
ASA, there will always be three remaining pairs that you didn’t use. The purpose 
of CPCTC is to show that one (or more) of these remaining pairs is congruent.

CPCTC is very easy to use. After you show that two triangles are congruent, you 
can state that two of their sides or angles are congruent on the next line of the 
proof, using CPCTC as the justification for that statement. This group of two con-
secutive lines makes up the core or heart of many proofs.

Now consider the SAS postulate. If you start with two sticks that connect to form a given 
angle, you’re again locked into a single triangle of a definite shape. And lastly, the ASA 
postulate works because if you start with one stick and two angles of given sizes that 
must go on the ends of the stick, there’s also only a single triangle you can make 
(this one’s a little harder to picture).

By the way, you don’t really need this stick idea to understand the three postulates. I 
just want to explain why the postulates work. In a nutshell, they all work because the 
three given things (three sides, or two sides and an angle, or two angles and a side) lock 
you into one definite triangle.
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Say you’re in the middle of some proof (the partial proof shown in Figure 9-6 
gives you the basic idea). And, say, at some point, you’re able to show with ASA 
that PQR  is congruent to XYZ . (The tick marks in the diagram show the pair of 
congruent sides and the two pairs of congruent angles that were used for ASA.) 
Then, since you’ve shown that the triangles are congruent, you can state on the 
next line that QR YZ  and use CPCTC for the reason (you could also use CPCTC to 

justify that PR XZ  or that QRP YZX).

Tackling a CPCTC proof
You can check out CPCTC in action in the proof that follows. But before I get to 
that, here’s a property you need to do the problem. It’s an incredibly simple 
 concept that comes up in many proofs.

The Reflexive Property: The Reflexive Property states that any segment or angle 
is congruent to itself. (Who would’ve thought?)

FIGURE 9-6:  
A critical pair of 

proof lines: 
Congruent 

triangles and 
CPCTC. 

© John Wiley & Sons, Inc.
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Whenever you see two triangles that share a side or an angle, that side or angle 
belongs to both triangles. With the Reflexive Property, the shared side or angle 
becomes a pair of congruent sides or angles that you can use as one of the three 
pairs of congruent things that you need to prove the triangles congruent. Check 
out Figure 9-7.

Here’s your CPCTC proof:

Given:  is a median and

an altitude of 

Prove:  bi

BD

ABC

BD
� ���

ssects ABC  
© John Wiley & Sons, Inc.

Before you write out the formal proof, come up with a game plan. Here’s one 
possibility:

 » Look for congruent triangles. The congruent triangles should just about 
jump out at you from this diagram. Think about how you’ll show that they’re 
congruent. The triangles share side BD, giving you one pair of congruent 
sides. BD is an altitude, so that gives you congruent right angles. And because 
BD is a median, AD CD (see Chapter 7 for more on medians and altitudes). 
That does it; you have SAS.

FIGURE 9-7:  
Using the 
Reflexive 

Property for  
the shared side, 

these triangles 
are congruent  

by SSS. 
© John Wiley & Sons, Inc.
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 » Now think about what you have to prove and what you’d need to know 
to get there. To conclude that BD

� ���
 bisects ABC , you need ABD CBD 

in the second-to-last line. And how will you get that? Why, with CPCTC, of 
course!

Here’s the two-column proof:

© John Wiley & Sons, Inc.

Every little step in a proof must be spelled out. For instance, in the preceding proof, 
you can’t go from the idea of a median (line 1) to congruent segments (line 3) in 
one step — even though it’s obvious — because the definition of median says 
nothing about congruent segments. By the same token, you can’t go from the idea 
of an altitude (line 4) to congruent right angles (line 7) in one step or even two 
steps. You need three steps to connect the links in this chain of logic: Altitude → 
perpendicular → right angles → congruent angles.
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Eying the Isosceles Triangle Theorems
The earlier sections in this chapter involve pairs of congruent triangles. Here, you 
get two theorems that involve a single isosceles triangle. Although you often need 
these theorems for proofs in which you show that two triangles are congruent, the 
theorems themselves concern only one triangle.

The following two theorems are based on one simple idea about isosceles triangles 
that happens to work in both directions:

 » If sides, then angles: If two sides of a triangle are congruent, then the angles 
opposite those sides are congruent. Figure 9-8 shows you how this works.

 » If angles, then sides: If two angles of a triangle are congruent, then the sides 
opposite those angles are congruent. Take a look at Figure 9-9.

FIGURE 9-8:  
The congruent 

sides tell you that 
the angles are 

congruent. 
© John Wiley & Sons, Inc.

FIGURE 9-9:  
The congruent 
angles tell you 

that the sides are 
congruent. 

© John Wiley & Sons, Inc.
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Look for isosceles triangles. The two angle-side theorems are critical for solving 
many proofs, so when you start doing a proof, look at the diagram and identify all 
triangles that look like they’re isosceles. Then make a mental note that you may 
have to use one of the two preceding theorems for one or more of the isosceles 
triangles. These theorems are incredibly easy to use if you spot all the isosceles 
triangles (which shouldn’t be too hard). But if you fail to notice them, the proof 
may become impossible. And note that your goal here is to spot single isosceles 
triangles because, unlike SSS, SAS, and ASA, the isosceles-triangle theorems do 
not involve pairs of triangles.

Here’s a proof. Try to work through a game plan and/or a formal proof on your 
own before reading the ones I present here.

Given:

Prove:

P T

PX TY

RX RY

Q S  
© John Wiley & Sons, Inc.

Here’s a game plan:

 » Check the proof diagram for isosceles triangles and pairs of congruent 
triangles. This proof’s diagram has an isosceles triangle, which is a huge hint 
that you’ll likely use one of the isosceles triangle theorems. You also have a 
pair of triangles that look congruent (the overlapping ones), which is another 
huge hint that you’ll want to show that they’re congruent.

 » Think about how to finish the proof with a triangle congruence theorem 
and CPCTC. You’re given the sides of the isosceles triangle, so that gives you 
congruent angles. You’re also given P T , so that gives you a second pair 
of congruent angles. If you can get PY TX , you’ll have ASA. And you can get 
that by adding XY  to the given congruent segments, PX  and TY . You finish 
with CPCTC.
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Check out the formal proof:

© John Wiley & Sons, Inc.

Trying Out Two More Ways  
to Prove Triangles Congruent

Back in the “Introducing Three Ways to Prove Triangles Congruent” section, I 
promised you that I’d give you two more ways to prove triangles congruent, and 
because I’m a man of my word, here they are.

Don’t try to find some nice connection between these two additional methods. 
They’re together simply because I didn’t want to give you all five methods in the 
first section and risk giving you a case of triangle-congruence-theorem overload.

AAS: Using the angle-angle-side theorem
AAS (Angle-Angle-Side): The AAS postulate states that if two angles and a non-
included side of one triangle are congruent to the corresponding parts of another 
triangle, then the triangles are congruent. Figure  9-10 shows you how AAS 
works.
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Like ASA (see the earlier section), to use AAS, you need two pairs of congruent 
angles and one pair of congruent sides to prove two triangles congruent. But for 
AAS, the two angles and one side in each triangle must go in the order angle-angle- 
side (going around the triangle either clockwise or counterclockwise).

ASS and SSA don’t prove anything, so don’t try using ASS (or its backward twin, 
SSA) to prove triangles congruent. You can use SSS, SAS, ASA, and AAS (or SAA, 
the backward twin of AAS) to prove triangles congruent, but not ASS. In short, 
every three-letter combination of A’s and S’s proves something unless it spells ass 
or is ass backward. (You work with AAA in Chapter 13, but it shows that triangles 
are similar, not congruent.)

Try to solve the following proof by first looking for all isosceles triangles (with the 
two isosceles triangle theorems in mind) and for all pairs of congruent triangles 
(with CPCTC in mind). I may sound like a broken record, but I can’t tell you how 
much easier some proofs become when you remember to check for these things!

Given:

Prove:  is the midpoint of 

QRT UTR

VRT VTR

SQ SU

V QU  
© John Wiley & Sons, Inc.

Here’s a game plan that shows how you might think through this proof:

 » Take note of isosceles triangles and pairs of congruent triangles. You 
should notice three isosceles triangles ( QSU , RST , and RVT ). The given 
congruent sides of QSU  give you Q U , and the given congruent angles 
of RVT  give you RV TV .

FIGURE 9-10:  
The congruence 

of two pairs of 
angles and a side 

not between 
them makes 

these triangles 
congruent. © John Wiley & Sons, Inc.
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You should also notice the two congruent-looking triangles ( QRV  and UTV ) 
and then realize that showing them congruent and using CPCTC is very likely 
the ticket.

 » Look at the prove statement and consider how the proof will likely end. 
To prove the midpoint, you need QV UV  on the second-to-last line, and you 
could get that by CPCTC if you knew that QRV  and UTV  were congruent.

 » Figure out how to prove the triangles congruent. You already have (from the 
first bullet) a pair of congruent angles ( Q and U ) and a pair of congruent 
sides (RV  and TV ). Because of where these angles and sides are, SAS and ASA 
won’t work, so the key has to be AAS. To use AAS, you’d need QRV UTV . 
Can you get that? Sure. Check out the givens: You subtract congruent angles 
VRT and VTR from congruent angles QRT and UTR. Checkmate.

Here’s the formal proof:

© John Wiley & Sons, Inc.
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HLR: The right approach for right triangles
HLR (Hypotenuse-Leg-Right angle): The HLR postulate states that if the hypot-
enuse and a leg of one right triangle are congruent to the hypotenuse and a leg of 
another right triangle, then the triangles are congruent. Figure 9-11 shows you an 
example. HLR is different from the other four ways of proving triangles congruent 
because it works only for right triangles.

In other books, HLR is usually called HL. Rebel that I am, I’m boldly renaming it 
HLR because its three letters emphasize that — as with SSS, SAS, ASA, and AAS — 
before you can use it in a proof, you need to have three things in the statement 
column (congruent hypotenuses, congruent legs, and right angles).

Note: When you use HLR, listing the pair of right angles in the statement column 
is sufficient for that part of the theorem. If you want to use a pair of right angles 
with SAS, ASA, and AAS, you have to state that the right angles are congruent, but 
with HLR, you don’t have to do that.

Ready for an HLR proof? Well, ready or not, here you go.

Given:  is isosceles with base 

 is an altitude

Prove

ABC AC

BD

::  is a medianBD  
© John Wiley & Sons, Inc.

Here’s a possible game plan. You see the pair of congruent triangles and then ask 
yourself how you can prove them congruent. You know you have a pair of 

FIGURE 9-11:  
Congruent legs 

and hypotenuses 
make these right 

triangles 
congruent. 

© John Wiley & Sons, Inc.
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congruent sides because ABC  is isosceles. You have another pair of congruent 
sides because of the Reflexive Property for BD. And you have the right angles 
because of the altitude. Voilà, that’s HLR. You then get AD CD with CPCTC, and 
you’re home free. Here it is in two-column format:

© John Wiley & Sons, Inc.

Going the Distance with the  
Two Equidistance Theorems

Although congruent triangles are the focus of this chapter, in this section, I give 
you two theorems that you can often use instead of proving triangles congruent. 
Even though you see congruent triangles in this section’s proof diagrams, you 
don’t have to prove the triangles congruent — one of the equidistance theorems 
gives you a shortcut to the prove statement.

Be on your toes for the equidistance shortcut. When doing triangle proofs, be alert 
for two possibilities: Look for congruent triangles and think about ways to prove 
them congruent, but at the same time, try to see whether one of the equidistance 
theorems can get you around the congruent triangle issue.
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Determining a perpendicular bisector
The first equidistance theorem tells you that two points determine the perpen-
dicular bisector of a segment. (To “determine” something means to fix or lock in 
its position, basically to show you where something is.) Here’s the theorem.

Two equidistant points determine the perpendicular bisector: If two points are 
each (one at a time) equidistant from the endpoints of a segment, then those 
points determine the perpendicular bisector of the segment. (Here’s an easy — 
though oversimplified — way to think about it: If you have two pairs of congruent 
segments, then there’s a perpendicular bisector.)

This theorem is a royal mouthful, so the best way to understand it is visually. 
Consider the kite-shaped diagram in Figure 9-12.

The theorem works like this: If you have one point (like X) that’s equally distant 
from the endpoints of a segment (W and Y) and another point (like Z) that’s also 
equally distant from the endpoints, then the two points (X and Z) determine the 
perpendicular bisector of that segment (WY ). You can also see the meaning of the 
short form of the theorem in this diagram: If you have two pairs of congruent seg-
ments (XW XY  and ZW ZY ), then there’s a perpendicular bisector (XZ

� ���
 is the 

perpendicular bisector of WY ).

Here’s a “SHORT” proof that shows how to use the first equidistance theorem as a 
shortcut so you can skip showing that triangles are congruent.

FIGURE 9-12:  
The first 

equidistance 
theorem. 

© John Wiley & Sons, Inc.
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Given:

Prove:  is the midpoint of 

SR SH

ORT OHT

T RH  
© John Wiley & Sons, Inc.

You can do this proof using congruent triangles, but it’d take you about nine steps 
and you’d have to use two different pairs of congruent triangles. The first equidis-
tance theorem shortens the proof to the following:

© John Wiley & Sons, Inc.

Using a perpendicular bisector
With the second equidistance theorem, you use a point on a perpendicular bisector 
to prove two segments congruent.

A point on the perpendicular bisector of a segment is equidistant from the seg-
ment’s endpoints: If a point is on the perpendicular bisector of a segment, then it’s 
equidistant from the endpoints of the segment. (Here’s my abbreviated version: If 
you have a perpendicular bisector, then there’s one pair of congruent segments.)
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Figure 9-13 shows you how the second equidistance theorem works.

This theorem tells you that if you begin with a segment (like MO) and its perpen-
dicular bisector (like YZ

� ���
) and you have a point on the perpendicular bisector (like N), 

then that point is equally distant from the endpoints of the segment. Note that you 
can see the reasoning behind the short form of the theorem in this diagram: If you 
have a perpendicular bisector (line YZ

� ���
 is the perpendicular bisector of MO), then 

there’s one pair of congruent segments (NM NO).

Here’s a proof that uses the second equidistance theorem:

Given:

Prove:

1 4

LQ NQ

LP NP  
© John Wiley & Sons, Inc.

FIGURE 9-13:  
The second 

equidistance 
theorem. 

© John Wiley & Sons, Inc.
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© John Wiley & Sons, Inc.

Making a Game Plan for a Longer Proof
In previous sections, I show you some typical examples of triangle proofs and all 
the theorems you need for them. Here, I walk you through a game plan for a lon-
ger, slightly gnarlier proof. This section gives you the opportunity to use some of 
the most important proof-solving strategies. Because the point of this section is 
to show you how to think through the commonsense reasoning for a longer proof, 
I skip the proof itself.

Here’s the setup for the proof. Try working through your own game plan before 
reading the one that follows.

Given:  

 

Prove:

EU LH EU SR

EL RU ES HU

EH SU

,

,

 
© John Wiley & Sons, Inc.
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Here’s a game plan that illustrates how your thought process might play out:

 » Look for congruent triangles. You should see three pairs of congruent 
triangles: the two small ones, ELH  and URS ; the two medium ones, ERS  
and ULH; and the two large ones, EUS and UEH . Then you should ask 
yourself how showing that one or more of these pairs of triangles are 
congruent and then using CPCTC could play a part in this proof.

 » Work backward. The final statement must be EH SU . CPCTC is the likely 
final reason. To use CPCTC, you’d have to show the congruence of either the 
small triangles or the large ones. Can you do that?

 » Use every given to see whether you can prove the triangles congruent. 
The two pairs of perpendicular segments give you congruent right angles in 
the small and medium triangles. For the small triangles, you also have 
EL RU . So to show that the small triangles are congruent, you’d need to get 
LH SR and use SAS or get LEH RUS  and use AAS. Unfortunately, 
there doesn’t seem to be any way to get either of these two congruencies.

If you could get EH SU , you could show the small triangles congruent by 
HLR, but EH SU  is what you’re trying to prove, so that nixes that option.

As for showing the two large triangles congruent, you have ES HU  and 
EU EU  by the Reflexive Property. To finish with SAS, you’d need to get 

SEU HUE , but that looks like another dead end.

So there doesn’t seem to be any direct way of showing either the small trian-
gles congruent or the large triangles congruent and then using CPCTC to  
finish the proof. Well, if there isn’t a direct way, then there must be a round-
about way.

 » Try the third set of triangles. If you could prove the two medium triangles 
congruent, you could use CPCTC on those triangles to get LH SR (the thing 
you needed to prove the small triangles congruent with SAS). Then, as 
described in the preceding bullet, you’d show the small triangles congruent 
and finish with CPCTC. So now all you have to do is show the medium 
triangles congruent, and after you do that, you know how to get to the end.

 » Use the givens again. Try to use the givens to prove ERS ULH  (the 
medium triangles). You already have two pairs of parts — the right angles  
and EU HU  — so all you need is the third pair of congruent parts; 

ESR UHL or SER HUL would give you AAS, and ER UL would 
give you HLR. Can you get any of these four pairs? Sure. The givens include 
EL RU . Adding LR to both of those gives you what you need, ER UL. (If 
you can’t see this, put in numbers: If EL and RU were both 3 and LR were 4, 
ER and UL would both be 7.) That does it. You use HLR for the medium 
triangles, and you know how to finish from there. You’re done.
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So taking it from the top, you add LR  to EL and RU , giving you ER UL. You use 
that plus ES HU  (given) and the right angles from the given perpendicular seg-
ments to get ERS ULH  by HLR. Then you use CPCTC to get LH SR. Using 
these sides, EL RU  (given), and another pair of congruent right angles, you get 

ELH URS  with SAS. CPCTC then gives you EH SU  to finish the proof.

(Note that there’s at least one other good way to do this proof. So if you saw a 
method different from what I described in this game plan, your method may be 
just as good.)

Running a Reverse with Indirect Proofs
To wrap up this chapter, I want to discuss indirect proofs — a different type of 
proof that’s sort of a weird uncle of your regular two-column proofs. With an 
indirect proof, instead of proving that something must be true, you prove it indi-
rectly by showing that it can’t be false.

Note the not. When your task in a proof is to prove that things are not congruent, 
not perpendicular, and so on, it’s a dead giveaway that you’re dealing with an 
indirect proof.

For the most part, an indirect proof is very similar to a regular two-column proof. 
What makes it different is the way it begins and ends. And except for the begin-
ning and end, to solve an indirect proof, you use the same techniques and theo-
rems that you’ve been using on regular proofs.

The best way to explain indirect proofs is by showing you an example. Here you go.

Given:  bisects 

Prove:

SQ PSR

PQS RQS

PS RS

� ���

  
© John Wiley & Sons, Inc.

Note two peculiar things about this odd duck of a proof: the not-congruent sym-
bols in the givens and the prove statement. The one in the prove statement is sort 
of what makes this an indirect proof.
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Here’s a game plan showing how you can tackle this indirect proof. You assume 
that the prove statement is false, namely that PS  is congruent to RS , and then your 
goal is to arrive at a contradiction of some known true thing (usually a given fact 
about things that are not congruent, not perpendicular, and so on). In this problem, 
your goal is to show that PQS  is congruent to RQS , which contradicts the given.

One last thing before showing you the solution — you can write out indirect proofs 
in the regular two-column format, but many geometry textbooks and teachers 
present indirect proofs in paragraph form, like this:

1. Assume the opposite of the prove statement, treating this opposite 
statement as a given.

Assume PS RS .

2. Work through the problem as usual, trying to prove the opposite of one of 
the givens (usually the one that states that things are not perpendicular, not 
congruent, or the like).

Because SQ
� ���

 bisects PSR , you know that PSQ RSQ. You also know 
that QS QS  by the Reflexive Property. Using these two congruences plus 
the one from Step 1, you can conclude that PSQ RSQ by SAS, and 
hence PQS RQS  by CPCTC.

3. Finish by stating that you’ve reached a contradiction and that, therefore,  
the prove statement must be true.

This last statement is impossible because it contradicts the given fact that 
PQS RQS. Consequently, the assumption (PS RS) must be false, and 

thus its opposite (PS RS ) must be true. Q.E.D. (Quod erat demonstrandum — 
“which was to be demonstrated” — for all you Latin-speakers out there; the 
rest of you can just say, “We’re done!”)

Note: After you assume that PS RS , it works just like a given. And after you 
identify your goal of showing PQS RQS , this goal now works like an ordi-
nary prove statement. In fact, after you do these two indirect proof steps, the rest 
of the proof, which starts with the givens (including the new “given” PS RS) 
and ends with PQS RQS , is exactly like a regular proof (although it looks 
different because it’s in paragraph form).
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UNDERSTANDING WHY INDIRECT  
PROOFS WORK
With indirect proofs, you enter the realm of the double negative. Just as multiplying two 
negative numbers gives you a positive answer, using two negatives in the English lan-
guage gives you a positive statement. For example, something that isn’t false is true, and 
if the statement that two angles aren’t congruent is false, then the angles are congruent.

Say that you have to prove that idea P is true. A regular proof might go like this: A and B 
are given, and from that you can deduce C; and if C is true, P must be true. With an indi-
rect proof, you take a different tack. You prove that P can’t be false. To do that, you 
assume that P is false and then show that that leads to an impossible conclusion (like 
the conclusion that A is false, which is impossible because A is given and therefore true). 
Finally, because assuming P was false led to an impossibility, P must be true. As easy as 
2 and 2 is 4, right?

Unfortunately, there’s one more little twist. In a typical indirect proof, the thing you’re 
asked to prove is a negative-sounding statement that something is not congruent or not 
perpendicular (you could have to prove a statement like M N , for example). So 
when you assume that that’s false, you’re assuming some regular-sounding, positive 
thing (like M N ). So just note that a true statement can be negative (like AB CD) 
and a false statement can be positive (like AB CD). This little twist doesn’t affect the 
basic logic, but I point it out just because all this stuff about assuming that something is 
false and the statements about angles not being congruent can be a bit confusing.  
(I hope that none of this hasn’t not been too unclear.)





4Polygons of the 
Four-or-More-
Sided Variety



IN THIS PART . . .

Get to know the many types of quadrilaterals.

Work on proofs about quadrilaterals.

Solve real-word problems related to polygons.

Work on problems involving similar shapes.
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IN THIS CHAPTER

Crossing the road to get to the other 
side: Parallel lines and transversals

Tracing the family tree of 
quadrilaterals

Plumbing the depths of 
parallelograms, rhombuses, 
rectangles, and squares

Flying high with kites and trapezoids

The Seven Wonders 
of the Quadrilateral 
World

In Chapters 7, 8, and 9, you deal with three-sided polygons — triangles. In this 
chapter and the next, you check out quadrilaterals, polygons with four sides. 
Then, in Chapter 12, you see polygons up to a gazillion sides. Totally exciting, 

right?

The most familiar quadrilateral, the rectangle, is by far the most common shape 
in the everyday world around you. Look around. Wherever you are, there are surely 
rectangular shapes in sight: books, tabletops, picture frames, walls, ceilings, 
floors, laptops, and so on.

Mathematicians have been studying quadrilaterals for over 2,000 years. All sorts 
of fascinating things have been discovered about these four-sided figures, and 
that’s why I’ve devoted this chapter to their definitions, properties, and classifi-
cations. Most of these quadrilaterals have parallel sides, so I introduce you to 
some parallel-line properties as well.

Chapter 10
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Getting Started with Parallel-Line 
Properties

Parallel lines are important when you study quadrilaterals because six of the seven 
types of quadrilaterals (all of them except the kite) contain parallel lines. In this 
section, I show you some interesting parallel-line properties.

Crossing the line with transversals: 
Definitionsandtheorems
Check out Figure 10-1, which shows three lines that kind of resemble a giant not-
equal sign. The two horizontal lines are parallel, and the third line that crosses 
them is called a transversal. As you can see, the three lines form eight angles.

The eight angles formed by parallel lines and a transversal are either congruent or 
supplementary. The following theorems tell you how various pairs of angles relate 
to each other.

Proving that angles are congruent: If a transversal intersects two parallel lines, 
then the following angles are congruent (refer to Figure 10-1):

 » Alternate interior angles: The pair of angles 3 and 6 (as well as 4 and 5) are 
alternate interior angles. These angle pairs are on opposite (alternate) sides of 
the transversal and are in between (in the interior of) the parallel lines.

 » Alternate exterior angles: Angles 1 and 8 (and angles 2 and 7) are called 
alternate exterior angles. They’re on opposite sides of the transversal, and 
they’re outside the parallel lines.

FIGURE 10-1:  
Two parallel lines, 

one transversal, 
and eight angles. 

© John Wiley & Sons, Inc.
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 » Corresponding angles: The pair of angles 1 and 5 (also 2 and 6, 3 and 7, and 
4 and 8) are corresponding angles. Angles 1 and 5 are corresponding because 
each is in the same position (the upper left-hand corner) in its group of four 
angles.

Also notice that angles 1 and 4, 2 and 3, 5 and 8, and 6 and 7 are across from each 
other, forming vertical angles, which are also congruent (see Chapter 5 for details).

Proving that angles are supplementary: If a transversal intersects two parallel 
lines, then the following angles are supplementary (see Figure 10-1):

 » Same-side interior angles: Angles 3 and 5 (and 4 and 6) are on the same side 
of the transversal and are in the interior of the parallel lines, so they’re called 
(ready for a shock?) same-side interior angles.

 » Same-side exterior angles: Angles 1 and 7 (and 2 and 8) are called same-side 
exterior angles — they’re on the same side of the transversal, and they’re 
outside the parallel lines.

Any two of the eight angles are either congruent or supplementary. You can sum up 
the definitions and theorems about transversals in this simple, concise idea. When 
you have two parallel lines cut by a transversal, you get four acute angles and four 
obtuse angles (except when you get eight right angles). All the acute angles are 
congruent, all the obtuse angles are congruent, and each acute angle is supple-
mentary to each obtuse angle.

Proving that lines are parallel: All the theorems in this section work in reverse. 
You can use the following theorems to prove that lines are parallel. That is, two 
lines are parallel if they’re cut by a transversal such that

 » Two corresponding angles are congruent.

 » Two alternate interior angles are congruent.

 » Two alternate exterior angles are congruent.

 » Two same-side interior angles are supplementary.

 » Two same-side exterior angles are supplementary.

Applying the transversal theorems
Here’s a problem that lets you take a look at some of the theorems in action: Given 
that lines m and n are parallel, find the measure of 1.
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© John Wiley & Sons, Inc.

Here’s the solution: The x 2  angle and the x 30  angle are alternate exterior 
angles and are therefore congruent. (Or you can use the preceding section’s tip 
about transversals: Because the two angles are both obviously acute, they must be 
congruent.) Set them equal to each other and solve for x:

Set equal to zero: 

Factor:

Use 

x x

x x

x x

2

2

30

30 0

6 5 0

ZZero Product Property:    or  

  or  

x

x

x

x

6 0

6

5 0

5

This equation has two solutions, so take them one at a time and plug them into the 
x’s in the alternate exterior angles. Plugging x 6 into x 2 gives you 36  for that 
angle. And because 1 is its supplement, 1 must be 180 36 , or 144 . The x 5 
solution gives you 25  for the x 2 angle and 155  for 1. So 144  and 155  are your 
answers for 1.

When you get two solutions (such as x 6 and x 5) in a problem like this, you 
do not plug one of them into one of the x’s (like 6 362 ) and the other solution into 
the other x (like 5 30 25). You have to plug one of the solutions into all x’s, 
giving you one result for both angles (6 362  and 6 30 36); then you have to 
separately plug the other solution into all x’s, giving you a second result for both 
angles ( 5 25

2
 and 5 30 25).

Angles and segments can’t have negative measures or lengths. Make sure that 
each solution for x produces positive answers for all the angles or segments in a 
problem (in the preceding problem, you should check both the x 2  angle and the 
x 30  angle with each solution for x). If a solution makes any angle or segment 

in the diagram negative, it must be rejected even if the angles or segments you 
care about end up being positive. However, do not reject a solution just because x 
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is negative: x can be negative as long as the angles and segments are positive  
(x 5, for example, works just fine in the example problem).

Now here’s a proof that uses some of the transversal theorems:

Given:

Prove:

LK HI

LK HI

GK JH

LJ GI



     
© John Wiley & Sons, Inc.

Check out the formal proof:

© John Wiley & Sons, Inc.
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Extend the lines in transversal problems. Extending the parallel lines and trans-
versals may help you see how the angles are related.

For instance, if you have a hard time seeing that K  and H  are indeed alternate 
interior angles (for Step 3 of the proof), rotate the figure (or tilt your head) until 
the parallel segments LK  and HI  are horizontal; then extend LK , HI , and HK  in 
both directions, turning them into lines (you know, with arrows). After doing 
that, you’re looking at the familiar parallel-line scheme shown in Figure 10-1. You 
can do the same thing for LJK  and IGH  by extending LI  and GI .

Working with more than one transversal
When a parallel-lines-with-transversal drawing contains more than three lines, 
identifying congruent and supplementary angles can be kind of challenging. 
 Figure 10-2 shows you parallel lines with two transversals.

If you get a figure that has more than three lines and you want to use any of the 
transversal ideas, make sure you’re using only three of the lines at a time: two 
parallel lines and one transversal. If you aren’t using such a set of three lines, the 
theorems just don’t work. With Figure 10-2, you can use lines a, b, and c, or you 
can use lines a, b, and d, but you can’t use both transversals c and d at the same 
time. Thus, you can’t, for example, conclude anything about the relationship 
between 1 and 6 because 1 is on transversal c and 6 is on transversal d.

Table 10-1 shows what you can say about several pairs of angles in Figure 10-2; 
the table indicates whether you can conclude that the angles are congruent or 
supplementary. As you read through this table, remember the warning about 
using only two parallel lines and a single transversal.

FIGURE 10-2:  
Parallel lines with 
two transversals. 

© John Wiley & Sons, Inc.
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If you get a figure with more than one transversal or more than one set of parallel 
lines, you may want to do the following: Trace the figure from your book to a sheet 
of paper and then highlight one pair of parallel lines and one transversal. (Or you 
can just trace the two parallel lines and one transversal you want to work with.) 
Then you can use the transversal ideas on the highlighted lines. After that, you 
can highlight a different group of three lines and work with those.

Of course, instead of tracing and highlighting, you can just make sure that the two 
angles you’re analyzing use a total of only three lines (one ray of each angle should 
be from the single transversal, and the other ray should be from one of the two 
parallel lines).

Meeting the Seven Members  
of the Quadrilateral Family

A quadrilateral is a shape with four straight sides. In this section and the next, you 
find out about the seven quadrilaterals. Some are surely familiar to you, and some 
may not be so familiar. Check out the following definitions and the quadrilateral 
family tree in Figure 10-3.

If you know what the quadrilaterals look like, their definitions should make sense 
and be pretty easy to understand (though the first one is a bit of a mouthful). Here 
are the seven quadrilaterals:

 » Kite: A quadrilateral in which two disjoint pairs of consecutive sides are 
congruent (“disjoint pairs” means that one side can’t be used in both pairs)

TABLE 10-1 Sorting Out Angles and Transversals
Angle Pair Conclusion Reason

2 and 8 Congruent 2 and 8 are alternate exterior angles on transversal d

3 and 6 Nothing To make 3, you need to use both transversals, c and d

4 and 5 Congruent 4 and 5 are alternate exterior angles on c

4 and 6 Nothing 4 is on transversal c and 6 is on transversal d

2 and 7 Supplementary 2 and 7 are same-side exterior angles on d

1 and 8 Nothing 1 is on transversal c and 8 is on transversal d

4 and 8 Nothing 4 is on transversal c and 8 is on transversal d
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 » Parallelogram: A quadrilateral that has two pairs of parallel sides

 » Rhombus: A quadrilateral with four congruent sides; a rhombus is both a kite 
and a parallelogram

 » Rectangle: A quadrilateral with four right angles; a rectangle is a type of 
parallelogram

 » Square: A quadrilateral with four congruent sides and four right angles; a 
square is both a rhombus and a rectangle

 » Trapezoid: A quadrilateral with exactly one pair of parallel sides (the parallel 
sides are called bases)

 » Isosceles trapezoid: A trapezoid in which the nonparallel sides (the legs) are 
congruent

FIGURE 10-3:  
The family tree of 

quadrilaterals. 
© John Wiley & Sons, Inc.
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In the hierarchy of quadrilaterals shown in Figure  10-3, a quadrilateral below 
another on the family tree is a special case of the one above it. A rectangle, for 
example, is a special case of a parallelogram. Thus, you can say that a rectangle is 
a parallelogram but not that a parallelogram is a rectangle (a parallelogram is only 
sometimes a rectangle).

Looking at quadrilateral relationships
The quadrilateral family tree shows you the relationships among the various 
quadrilaterals. Table 10-2 gives you a taste of some of these relationships. (You 
can test yourself by supplying the answers — always, sometimes, or never — before 
you check the answer column.)

Keep your family tree (Figure 10-3) handy when you’re doing always, sometimes, 
never problems, because you can use the quadrilaterals’ positions on the tree to 
figure out the answer. Here’s how:

 » If you go up from the first figure to the second, the answer is always.

 » If you go down from the first figure to the second, then the answer is 
sometimes.

 » If you can make the connection by going down and then up (like from a 
rectangle to a kite or vice versa), the answer’s sometimes.

 » If the only way to get from one figure to the other is by going up and then 
down (like from a parallelogram to an isosceles trapezoid), the answer is never.

TABLE 10-2 How Are These Quadrilaterals Related?
Assertion Answer

A rectangle is a rhombus. Sometimes (when it’s a square)

A kite is a parallelogram. Sometimes (when it’s a rhombus)

A rhombus is a parallelogram. Always

A kite is a rectangle. Sometimes (when it’s a square)

A trapezoid is a kite. Never

A parallelogram is a square. Sometimes

An isosceles trapezoid is a rectangle. Never

A square is a kite. Always

A rectangle is a square. Sometimes
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Working with auxiliary lines
The following proof introduces you to a new idea: adding a line or segment (called 
an auxiliary line) to a proof diagram to help you do the proof. Some proofs are 
impossible to solve until you add a line to the diagram.

Auxiliary lines often create congruent triangles, or they intersect existing lines at 
right angles. So if you’re stumped by a proof, see whether drawing an auxiliary 
line (or lines) could get you one of those things.

Two points determine a line: When you draw in an auxiliary line, just write some-
thing like “Draw AB” in the statement column; then use this postulate in the 
reason column: Two points determine a line (or ray or segment).

Here’s an example proof:

Given:  is a parallelogram

Prove:

GRAM

GR AM  
© John Wiley & Sons, Inc.

You might come up with a game plan like the following:

 » Take a look at the givens. The only thing you can conclude from the single 
given is that the sides of GRAM are parallel (using the definition of a parallelo-
gram). But it doesn’t seem like you can go anywhere from there.

 » Jump to the end of the proof. What could be the justification for the final 
statement, GR AM ? At this point, no justification seems possible, so put on 
your thinking cap.

 » Consider drawing an auxiliary line. If you draw RM , as shown in Figure 10-4, 
you get triangles that look congruent. And if you could show that they’re 
congruent, the proof could then end with CPCTC. (Note: You can do the proof 
in a similar way by drawing GA instead of RM .)

 » Show that the triangles are congruent. To show that the triangles are 
congruent, you use RM  as a transversal. First, use it with parallel sides RA and 
GM ; that gives you congruent, alternate interior angles GMR and ARM (see 
the earlier “Getting Started with Parallel-Line Properties” section). Then use 
RM  with parallel sides GR and MA; that gives you two more congruent, 
alternate interior angles, GRM and AMR.These two pairs of congruent angles, 
along with side RM  (which is congruent to itself by the Reflexive Property), 
prove the triangles congruent with ASA. That does it.
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Here’s the formal proof:

© John Wiley & Sons, Inc.

A good way to spot congruent alternate interior angles in a diagram is to look for 
pairs of so-called Z-angles. Look for a Z or backward Z — or a stretched-out Z or 
backward Z — as shown in Figures 10-5 and 10-6. The angles in the crooks of the 
Z are congruent.

FIGURE 10-4:  
Connecting two 

points on the 
figure creates 

triangles you can 
use in your proof. 

© John Wiley & Sons, Inc.

FIGURE 10-5:  
Four pairs of 

congruent 
Z-angles. 

© John Wiley & Sons, Inc.
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Giving Props to Quads: The Properties  
of Quadrilaterals

The properties of the quadrilaterals are simply the things that are true about them. 
The properties of a particular quadrilateral concern its

 » Sides: Are they congruent? Parallel?

 » Angles: Are they congruent? Supplementary? Right?

 » Diagonals: Are they congruent? Perpendicular? Do they bisect each other? Do 
they bisect the angles whose vertices they meet?

I present a total of about 30 quadrilateral properties, which may seem like a lot to 
memorize. No worries. You don’t have to rely solely on memorization. Here’s a 
great tip that makes learning the properties a snap.

If you can’t remember whether something is a property of some quadrilateral, just 
sketch the quadrilateral in question. If the thing looks true, it’s probably a prop-
erty; if it doesn’t look true, it’s not a property. (This method is almost foolproof, 
but it’s a bit un-math-teacherly of me to say it — so don’t quote me, or I might 
get in trouble with the math police.)

Properties of the parallelogram
I have a feeling you can guess what’s in this section. You got it — the properties 
of parallelograms.

The parallelogram has the following properties:

 » Opposite sides are parallel by definition.

 » Opposite sides are congruent.

FIGURE 10-6:  
The two pairs of 

Z-angles from the 
preceding proof: 

a backward Z and 
a tipped Z. 

© John Wiley & Sons, Inc.
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 » Opposite angles are congruent.

 » Consecutive angles are supplementary.

 » The diagonals bisect each other.

If you just look at a parallelogram, the things that look true (namely, the things 
on this list) are true and are thus properties, and the things that don’t look like 
they’re true aren’t properties.

If you draw a picture to help you figure out a quadrilateral’s properties, make your 
sketch as general as possible. For instance, as you sketch your parallelogram, 
make sure it’s not almost a rhombus (with four sides that are almost congruent) 
or almost a rectangle (with four angles close to right angles). If your parallelo-
gram sketch is close to, say, a rectangle, something that’s true for all rectangles 
but not true for all parallelograms (such as congruent diagonals) may look true 
and thus cause you to mistakenly conclude that it’s a property of parallelograms. 
Capiche?

Imagine that you can’t remember the properties of a parallelogram. You could just 
sketch one (as in Figure 10-7) and run through all things that might be properties.

Table  10-3 concerns questions about the sides of a parallelogram (refer to 
Figure 10-7).

FIGURE 10-7:  
A run-of-the-mill 

parallelogram. 
© John Wiley & Sons, Inc.

TABLE 10-3 Asking Questions about Sides of Parallelograms
Do Any Sides Appear to Be . . . Answer

Congruent? Yes, opposite sides look congruent, and that’s a property. But 
adjacent sides don’t look congruent, and that’s not a property.

Parallel? Yes, opposite sides look parallel (and of course, you know this 
property if you know the definition of a parallelogram).
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Table 10-4 explores the angles of a parallelogram (see Figure 10-7 again).

Table  10-5 addresses statements about the diagonals of a parallelogram (see 
Figure 10-7).

Look at your sketch carefully. When I show students a parallelogram like the one 
in Figure 10-7 and ask them whether the diagonals look congruent, they often tell 
me that they do despite the fact that one is literally twice as long as the other! So 
when asking yourself whether a potential property looks true, don’t just take a 
quick glance at the quadrilateral and don’t let your eyes play tricks on you. Look 
at the segments or angles in question very carefully.

TABLE 10-4 Asking Questions about Angles of Parallelograms
Do Any Angles Appear to Be . . . Answer

Congruent? Yes, opposite angles look congruent, and that’s a property.  
(Angles A and C appear to be about 45 , and angles B and D look 
like about 135 ).

Supplementary? Yes, consecutive angles (like angles A and B) look like they’re 
supplementary, and that’s a property. (Using parallel lines BC

� ���
 and 

AD
� ���

 and transversal AB
� ���

, angles A and B are same-side interior 
angles and are therefore supplementary.)

Right angles? Obviously not, and that’s not a property.

TABLE 10-5 Asking Questions about Diagonals of Parallelograms
Do the Diagonals Appear to Be . . . Answer

Congruent? Not even close (in Figure 10-7, one is roughly twice as long as the 
other, which surprises most people; measure them if you don’t 
believe me!) — not a property.

Perpendicular? Not even close; not a property.

Bisecting each other? Yes, each one seems to cut the other in half, and that’s a property.

Bisecting the angles whose vertices 
they meet?

No. At a quick glance, you might think that A (or C ) is bisected 
by diagonal AC , but if you look closely, you see that BAC  is 
actually about twice as big as DAC . And of course, diagonal BD
doesn’t come close to bisecting B or D. Not a property.
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The sketching-quadrilaterals method and the questions in the preceding three 
tables bring me to an important tip about mathematics in general.

Whenever possible, bolster your memorization of rules, formulas, concepts, and 
so on by trying to see why they’re true or why they seem to make sense. Not only 
does this make the ideas easier to memorize, but it also helps you see connections 
to other ideas, and that fosters a deeper understanding of mathematics.

And now for a parallelogram proof:

Given:  is a parallelogram

 is the midpoint of 

 is t

JKLM

T JM

S hhe midpoint of 

Prove:

KL

1 2 
© John Wiley & Sons, Inc.

Use quadrilateral properties in quadrilateral proofs. If one of the givens in a proof 
is that a shape is a particular quadrilateral, you can be sure that you’ll need to use 
one or more of the properties of that quadrilateral in the proof — usually to show 
triangles congruent.

Your thought process might go like this:

 » Note the congruent triangles. If you could prove the triangles congruent, 
you could get JTK LSM  by CPCTC and then get 1 2 by supplements 
of congruent angles.

 » Prove the triangles congruent. Can you use some of the properties of a 
parallelogram? Sure: Opposite sides are congruent gives you JK LM , and 
opposite angles are congruent gives you J L. Two congruent pairs down, 
one to go. The two midpoints in the given is a clue that you need to use Like 
Divisions (see Chapter 5). That’s it — you cut congruent sides JM  and KL in 
half to give you JT LS , which gives you congruent triangles by SAS.
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Here’s the formal proof:

© John Wiley & Sons, Inc.

Properties of the three special 
 parallelograms
Figure 10-8 shows you the three special parallelograms, so-called because they’re, 
as mathematicians say, special cases of the parallelogram. (In addition, the square 
is a special case or type of both the rectangle and the rhombus.) The three-level 
hierarchy you see with parallelogram → rectangle → square or parallelogram → 
rhombus → square in the quadrilateral family tree (Figure  10-3) works just like 
mammal → dog → Dalmatian. A dog is a special type of mammal, and a Dalmatian 
is a special type of dog.

Before reading the properties that follow, try figuring them out on your own. 
Using the shapes in Figure 10-8, run down the list of possible properties from the 
beginning of “Giving Props to Quads: The Properties of Quadrilaterals,” asking 
yourself whether the possible properties look like they’re true for the rhombus, 
the rectangle, and the square. (Note that both the rhombus and the rectangle in 
Figure 10-8 are drawn as generally as possible; in other words, neither one resem-
bles a square. Also, note that the rhombus is vertical rather than on its side like 
parallelograms are usually drawn; this is the easier and better way to draw a 
rhombus because you can more easily see its symmetry and the fact that its diago-
nals are perpendicular.)
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Here are the properties of the rhombus, rectangle, and square. Note that because 
these three quadrilaterals are all parallelograms, their properties include the 
 parallelogram properties.

 » The rhombus has the following properties:

• All the properties of a parallelogram apply (the ones that matter here are 
parallel sides, opposite angles are congruent, and consecutive angles are 
supplementary).

• All sides are congruent by definition.

• The diagonals bisect the angles.

• The diagonals are perpendicular bisectors of each other.

 » The rectangle has the following properties:

• All the properties of a parallelogram apply (the ones that matter here are 
parallel sides, opposite sides are congruent, and diagonals bisect each other).

• All angles are right angles by definition.

• The diagonals are congruent.

 » The square has the following properties:

• All the properties of a rhombus apply (the ones that matter here are 
parallel sides, diagonals are perpendicular bisectors of each other, and 
diagonals bisect the angles).

• All the properties of a rectangle apply (the only one that matters here is 
diagonals are congruent).

• All sides are congruent by definition.

• All angles are right angles by definition.

FIGURE 10-8:  
The two kids and 

one grandkid (the 
square) of the 
parallelogram. 

© John Wiley & Sons, Inc.
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Now try working through a couple of problems: Given the rectangle as shown, find 
the measures of 1 and 2:

© John Wiley & Sons, Inc.

Here’s the solution: MNPQ is a rectangle, so Q 90 . Thus, because there are 
180  in a triangle, you can say the following:

90 3 2 20 180

3 2 20 90

5 70

14

x x

x x

x

x

Now plug in 14 for all the x’s. Angle QMP, 3x , is 3 14, or 42 , and because 
you have a rectangle, 1 is the complement of QMP  and is therefore 90 42 , 
or 48 . Angle QPM, 2 20x , is 2 14 20, or 48 , and 2, its complement, is  
therefore 42 .

Now find the perimeter of rhombus RHOM.

© John Wiley & Sons, Inc.

Here’s the solution: All the sides of a rhombus are congruent, so HO equals x 2. 
And because the diagonals of a rhombus are perpendicular, HBO is a right  
triangle. You finish with the Pythagorean Theorem:
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Combine like terms and set equal to zero:
Factor:

a b c

HB

2 2 2

2 2 2

2 2 2

2 2 2

2

1 2

2 1 4 4

2 3

BO HO

x x x

x x x x x

x x 00

3 1 0

3 0

3

x x

x

x

Use Zero Product Property:   or  

  or   

x

x

1 0

1

You can reject x 1 because that would result in HBO having legs with lengths 
of −1 and 0. So x equals 3, which gives HR a length of 5. Because rhombuses have 
four congruent sides, RHOM has a perimeter of 4 5, or 20 units.

Properties of the kite
Check out the kite in Figure 10-9 and try to figure out its properties before reading 
the list that follows.

The properties of the kite are as follows:

 » Two disjoint pairs of consecutive sides are congruent by definition (JK LK and 
JM LM ). Note: Disjoint means that one side can’t be used in both pairs — the 
two pairs are totally separate.

 » The diagonals are perpendicular.

 » One diagonal (KM , the main diagonal) is the perpendicular bisector of the 
other diagonal (JL , the cross diagonal). (The terms “main diagonal” and “cross 
diagonal” are quite useful, but don’t look for them in other geometry books 
because I made them up.)

FIGURE 10-9:  
A mathematical 

kite that looks 
ready for flying. 

© John Wiley & Sons, Inc.
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 » The main diagonal bisects a pair of opposite angles ( K  and M ).

 » The angles at the endpoints of the cross diagonal are congruent ( J  and L).

The last three properties are called the half properties of the kite.

Grab an energy drink and get ready for another proof. Due to space considerations, 
I’m going to skip the game plan this time. You’re on your own.

Given:  is a kite with 

Prove:

RSTV RS TS

WV UV

WS US                     
© John Wiley & Sons, Inc.
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Properties of the trapezoid  
and the isosceles trapezoid
Practice your picking-out-properties proficiency one more time with the trape-
zoid and isosceles trapezoid in Figure 10-10. Remember: What looks true is likely 
true, and what doesn’t, isn’t.

 » The properties of the trapezoid are as follows:

• The bases are parallel by definition.

• Each lower base angle is supplementary to the upper base angle on the 
same side.

 » The properties of the isosceles trapezoids are as follows:

• The properties of trapezoids apply by definition (parallel bases).

• The legs are congruent by definition.

• The lower base angles are congruent.

• The upper base angles are congruent.

• Any lower base angle is supplementary to any upper base angle.

• The diagonals are congruent.

Perhaps the hardest property to spot in both diagrams is the one about supple-
mentary angles. Because of the parallel sides, consecutive angles are same-side 
interior angles and are thus supplementary. (All the quadrilaterals except the kite, 
by the way, contain consecutive supplementary angles.)

Here’s an isosceles trapezoid proof for you. I trust you to handle the game plan on 
your own again.

FIGURE 10-10:  
A trapezoid  

(on the left) and 
an isosceles 

trapezoid (on  
the right). 

© John Wiley & Sons, Inc.
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Given:  is an isosceles trapezoid

with bases  and 

Pr

ZOID

OI ZD

oove: TO TI 
© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Noting the property-proof 
connection

Proving a figure is a parallelogram or 
other quadrilateral

Proving That You 
Have a Particular 
Quadrilateral

Chapter 10 tells you all about seven different quadrilaterals — their defini-
tions, their properties, what they look like, and where they fit on the quad-
rilateral family tree. Here, I fill you in on proving that a given quadrilateral 

qualifies as one of the seven types.

Throughout this chapter, you work on proofs in which you have to show that the 
quadrilateral in the diagram is, say, a parallelogram or a rectangle or a kite (the 
final line of the proof — or a line near the end — might be something like “ABCD 
is a rectangle”). Now, maybe you’re thinking that’ll be easy, that all you have to 
do is show that the quadrilateral has, say, one of the rectangle properties to prove 
it’s a rectangle. Unfortunately, it’s not that simple because there are instances 
where different types of quadrilaterals share the same trait. But don’t worry — this 
 chapter tells you how to look beyond any family resemblance to get a positive ID.

Chapter 11
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Putting Properties and Proof 
Methods Together

Before getting into the many ways you can prove that a figure is a parallelogram, 
a rectangle, a kite, and so on, I want to talk about how these proof methods relate 
to the quadrilateral properties that I cover in Chapter  10. (If, like Sergeant Joe 
Friday, your motto is “Just the facts, Ma’am,” you can skip this discussion and 
just memorize the proof methods, which you find in the upcoming sections. But if 
you want a fuller understanding of this topic, read on.)

To begin our discussion of the connection between proof methods and properties, 
let’s consider one of the parallelogram properties from Chapter 10: Opposite sides 
of a parallelogram are congruent. Here’s this property in if-then form so you can see 
its logical structure: If a quadrilateral is a parallelogram, then its opposite sides are 
congruent.

It turns out that the converse (reverse) of this property is also true: If opposite sides 
of a quadrilateral are congruent, then it’s a parallelogram. Because the converse of the 
property is true, you can use the converse as a method of proof. If you’re doing a 
two-column proof in which you have to prove that a quadrilateral is a parallelo-
gram, the final statement might be something like, “ABCD is a parallelogram,” 
and the final reason might be, “If opposite sides of a quadrilateral are congruent, 
then it’s a parallelogram.”

Some quadrilateral properties are reversible; others are not. Reversible or not is the 
key. If the converse of a property is also a true statement, then you can use it as a 
method of proof. But if a property isn’t reversible (in other words, its converse is 
false), you can’t use it as a method of proof. The relationship between properties 
and methods of proof is a bit complicated, but the following guidelines and exam-
ples should help clear things up:

 » Definitions always work as a method of proof. One of the properties of the 
rhombus is that all its sides are congruent. An abbreviated if-then statement 
would be if rhombus, then all sides congruent.

Because this property follows from the definition of a rhombus, its converse is 
also true: if all sides congruent, then rhombus. (As I show you in Chapter 4, all 
definitions are reversible; but only some theorems and postulates are revers-
ible.) Because this property is reversible, it’s one of the ways of proving that a 
quadrilateral is a rhombus.

 » When a “child” quadrilateral shares a property with a “parent” quadrilat-
eral, you can’t use the converse of that property to prove that you have 
the child quadrilateral. (A “child” quadrilateral connects to its “parent” above 
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it on the quadrilateral family tree.) One rhombus property is that both pairs of 
opposite sides are parallel. In short, if rhombus, then two pairs of parallel sides. 
This property also belongs to the parallelogram, and a rhombus has this 
property by virtue of the fact that it’s a special type of a parallelogram.

The converse of this statement — if two pairs of parallel sides, then rhombus —  
is clearly false because not all parallelograms are rhombuses; thus, you can’t 
use the converse to prove that you have a rhombus. If you have two pairs of 
parallel sides, all you can conclude is that you have a parallelogram.

 » Some other properties of quadrilaterals are reversible — but you can’t 
always count on it. Of the properties that don’t follow from definitions and 
that aren’t shared with parent quadrilaterals, most are reversible, but a few 
aren’t. One of the properties of a parallelogram is that its diagonals bisect 
each other: if parallelogram, then diagonals bisect each other. The converse of 
this — if diagonals bisect each other, then parallelogram — is true and is thus 
one of the ways of proving that a figure is a parallelogram.

Now consider this property of a rectangle: if rectangle, then diagonals are 
 congruent. The converse of this — if diagonals are congruent, then rectangle —  
is false, and thus you can’t use it as a method of proving that you have a rect-
angle. The converse is false because all isosceles trapezoids, some kites, and 
some no-name quadrilaterals have congruent diagonals. (You can see this by 
taking two pens or pencils of equal length, crossing them over each other to 
make them work like diagonals, and moving them around to create different 
shapes.)

And finally, to make matters even more complicated . . .

 » Some methods of proof aren’t properties in reverse. For example, one of 
the methods of proving that a quadrilateral is a parallelogram is to show that 
one pair of sides is both parallel and congruent. Although this proof method is 
related to the parallelogram’s properties, it isn’t the reverse of any single 
property. For these oddball methods of proof, you may have to resort to just 
memorizing them.

In case you’re curious, this is the end of the theoretical mumbo-jumbo I said you 
could skip. Now let’s come back down to earth and go through the basic proof 
methods and how to use them.

Before attempting to prove that a figure is a certain quadrilateral, make sure you 
know all the proof methods well. You want to have them all at your fingertips, and 
then you should remain flexible — ready to use any of them. After considering the 
givens, pick the proof method that seems most likely to do the trick. If it works, 
great; but if, after working on it for a little while, it looks like it’s not going to 
work or that it would take too many steps, switch course and try a different proof 
method and then maybe a third. After you get really familiar with all the methods, 
you can sort of consider them all simultaneously.



180      PART 4  Polygons of the Four-or-More-Sided Variety

Proving That a Quadrilateral  
Is a Parallelogram

The five methods for proving that a quadrilateral is a parallelogram are among the 
most important proof methods in this chapter. One reason they’re important is 
that you often have to prove that a quadrilateral is a parallelogram before going on 
to prove that it’s one of the special parallelograms (a rectangle, a rhombus, or a 
square). Parallelogram proofs are the most common type of quadrilateral proof in 
geometry textbooks, so you’ll use these methods over and over again.

Surefire ways of ID-ing a parallelogram
Five ways to prove that a quadrilateral is a parallelogram: There are five different 
ways of proving that a quadrilateral is a parallelogram. The first four are the con-
verses of parallelogram properties (including the definition of a parallelogram). 
Make sure you remember the oddball fifth one — which isn’t the converse of a 
property — because it often comes in handy:

 » If both pairs of opposite sides of a quadrilateral are parallel, then it’s a 
parallelogram (reverse of the definition). Because this is the reverse of the 
definition, it’s technically a definition, not a theorem or postulate, but it works 
exactly like a theorem, so don’t sweat this distinction.

 » If both pairs of opposite sides of a quadrilateral are congruent, then it’s 
a parallelogram (converse of a property).

To get a feel for why this proof method works, take two toothpicks and two 
pens or pencils of the same length and put them all together tip-to-tip; create 
a closed figure, with the toothpicks opposite each other. The only shape you 
can make is a parallelogram.

 » If both pairs of opposite angles of a quadrilateral are congruent, then it’s 
a parallelogram (converse of a property).

 » If the diagonals of a quadrilateral bisect each other, then it’s a parallelo-
gram (converse of a property).

Take, say, a pencil and a toothpick (or two pens or pencils of different lengths) 
and make them cross each other at their midpoints. No matter how you 
change the angle they make, their tips form a parallelogram.

 » If one pair of opposite sides of a quadrilateral are both parallel and 
congruent, then it’s a parallelogram (neither the reverse of the definition 
nor the converse of a property).
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Take two pens or pencils of the same length, holding one in each hand. If you 
keep them parallel, no matter how you move them around, you can see that 
their four ends form a parallelogram.

The preceding list contains the converses of four of the five parallelogram proper-
ties. If you’re wondering why the converse of the fifth property (consecutive angles 
are supplementary) isn’t on the list, you have a good mind for details. Essentially, 
the converse of this property, while true, is difficult to use, and you can always use 
one of the other methods instead.

Trying some parallelogram proofs
Here’s your first parallelogram proof:

Given:

Prove:  is a 
parallelogra

UQV RVQ
TUQ SRV

QRVU
m  

© John Wiley & Sons, Inc.

Here’s a game plan outlining how your thinking might go:

 » Notice the congruent triangles. Always check for triangles that look 
congruent!

 » Jump to the end of the proof and ask yourself whether you could prove 
that QRVU is a parallelogram if you knew that the triangles were 
congruent. Using CPCTC, you could show that QRVU has two pairs of 
congruent sides, and that would make it a parallelogram. So . . .

 » Show that the triangles are congruent. You already have QV  congruent to 
itself by the Reflexive Property and one pair of congruent angles (given), and 
you can get the other angle for AAS with supplements of congruent angles (see 
Chapter 5). That does it.

There are two other good ways to do this proof. If you had noticed that the given 
congruent angles, UQV and RVQ, are alternate interior angles, you could have cor-
rectly concluded that UQ and VR are parallel. (This is a good thing to notice, so 
congratulations if you did.) You might then have had the good idea to try to prove 
the other pair of sides parallel so you could use the first parallelogram proof 
method. You can do this by proving the triangles congruent, using CPCTC, and then 
using alternate interior angles VQR and QVU, but assume, for the sake of argu-
ment, that you didn’t realize this. It would seem like you were at a dead end. Don’t 
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let this frustrate you. When doing proofs, it’s not uncommon for good ideas and 
good plans to lead to dead ends. When this happens, just go back to the drawing 
board. A third way to do the proof is to get that first pair of parallel lines and then 
show that they’re also congruent — with congruent triangles and CPCTC — and 
then finish with the fifth parallelogram proof method. These proof methods are 
perfectly good alternatives; I just thought my method was a bit more 
straightforward.

Take a look at the formal proof:

© John Wiley & Sons, Inc.

Here’s another proof — with a pair of parallelograms. This problem gives you 
more practice with parallelogram proof methods, and because it’s a bit longer 
than the first proof, it gives you a chance to think through a longer game plan.

Given:  is a parallelogram

Prove:  is a para

HEJG
DGH FEJ

DEFG lllelogram 
© John Wiley & Sons, Inc.
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Because all quadrilaterals (except for the kite) contain parallel lines, be on the 
lookout for opportunities to use the parallel-line theorems from Chapter 10. And 
always keep your eyes peeled for congruent triangles.

Your game plan might go something like this:

 » Look for congruent triangles. This diagram takes the cake for containing 
congruent triangles — it has six pairs of them! Don’t spend much time 
thinking about them — except the ones that might help you — but at least 
make a quick mental note that they’re there.

 » Consider the givens. The given congruent angles, which are parts of DGH  
and FEJ , are a huge hint that you should try to show these triangles congru-
ent. You have those congruent angles and the congruent sides HG and EJ  
from parallelogram HEJG, so you need only one more pair of congruent sides 
or angles to use SAS or ASA (see Chapter 9).

 » Think about the end of the proof. To prove that DEFG is a parallelogram, it 
would help to know that DG EF , so you’d like to be able to prove the 
triangles congruent and then get DG EF  by CPCTC. That eliminates the SAS 
option for proving the triangles congruent because to use SAS, you’d need to 
know that DG EF  — the very thing you’re trying to get with CPCTC. (And if 
you knew DG EF , there would be no point in showing that the triangles are 
congruent, anyway.) So you should try the other option: proving the triangles 
congruent with ASA.

The second angle pair you’d need for ASA consists of DHG and FJE. 
They’re congruent because they’re alternate exterior angles using parallel 
lines HG

� ���
 and EJ
� ��

 and transversal DF
� ���

. Okay, so the triangles are congruent by 
ASA, and then you get DG EF  by CPCTC. You’re on your way.

 » Consider parallelogram proof methods. You now have one pair of congru-
ent sides of DEFG. Two of the parallelogram proof methods use a pair of 
congruent sides. To complete one of these methods, you need to show one of 
the following:

• That the other pair of opposite sides are congruent

• That DG and EF  are parallel as well as congruent

Ask yourself which approach looks easier or quicker. Showing DE GF  would 
probably require showing a second pair of triangles congruent, and that looks 
like it would take a few more steps, so try the other tack.

Can you show DG EF ? Sure, with one of the parallel-line theorems from 
Chapter 10. Because angles GDH and EFJ are congruent (by CPCTC), you can 
finish by using those angles as congruent alternate interior angles, or 
Z-angles, to give you DG EF . That’s a wrap!
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Now take a look at the formal proof:

© John Wiley & Sons, Inc.

Note: As I mention in the game plan, you can prove that DEFG is a parallelogram 
by showing that both pairs of opposite sides are congruent. Your first eight steps 
would be the same, and then you’d go on to show that DEF FGD and then use 
CPCTC. This proof method would take you about 12 steps. Or you could prove that 
both pairs of opposite sides of DEFG are parallel (if you have some strange urge to 
make the proof really long). This proof method would take you about 15 steps.

Proving That a Quadrilateral Is a 
Rectangle, Rhombus, or Square

Some of the ways to prove that a quadrilateral is a rectangle or a rhombus are 
directly related to the rectangle or rhombus properties (including their defini-
tions). Other methods require you to first show (or be given) that the quadrilateral 



CHAPTER 11  Proving That You Have a Particular Quadrilateral      185

is a parallelogram and then go on to prove that the parallelogram is a rectangle or 
rhombus. The same thing goes for proving that a quadrilateral is a square, except 
that instead of showing that the quadrilateral is a parallelogram, you have to show 
that it’s both a rectangle and a rhombus. I introduce you to these proofs in the 
following sections.

Revving up for rectangle proofs
Three ways to prove that a quadrilateral is a rectangle: Note that the second and 
third methods require that you first show (or be given) that the quadrilateral in 
question is a parallelogram:

 » If all angles in a quadrilateral are right angles, then it’s a rectangle 
(reverse of the rectangle definition). (Actually, you only need to show that 
three angles are right angles — if they are, the fourth one is automatically a 
right angle as well.) This is a definition, not a theorem or postulate, but it 
works exactly like a theorem, so don’t sweat it.

 » If the diagonals of a parallelogram are congruent, then it’s a rectangle 
(neither the reverse of the definition nor the converse of a property).

 » If a parallelogram contains a right angle, then it’s a rectangle (neither the 
reverse of the definition nor the converse of a property).

Do the following to visualize why this method works: Take an empty cereal 
box and push in the top flaps. If you then look into the empty box, the top of 
the box makes a rectangular shape, right? Now, start to crush the top of the 
box — you know, like you want to make it flat before putting it in the trash 
(I hope you get what I mean so you can do this highly scientific experiment). 
As you start to crush the top of the box, you see a parallelogram shape. Now, 
after you’ve crushed it a bit, if you take this parallelogram and make one of 
the angles a right angle, the whole top has to become a rectangle again. You 
can’t make one of the angles a right angle without the other three also becom-
ing right angles.

Before I show any of these proof methods in action, here’s a useful little theorem 
that you need to do the upcoming proof.

Congruent supplementary angles are right angles: If two angles are both supple-
mentary and congruent, then they’re right angles. This idea makes sense because 
90 90 180 .
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Okay, so here’s the proof. The game plan’s up to you.

Given:  is supplementary 
to 

 is supplementary 
to 

1
2

2
3

1  is supplementary 
to 

Prove:

3

NL EG  
© John Wiley & Sons, Inc.

© John Wiley & Sons, Inc.
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Waxing rhapsodic about rhombus proofs
Six ways to prove that a quadrilateral is a rhombus: You can use the following six 
methods to prove that a quadrilateral is a rhombus. The last three methods on this 
list require that you first show (or be given) that the quadrilateral in question is a 
parallelogram:

 » If all sides of a quadrilateral are congruent, then it’s a rhombus (reverse 
of the definition). This is a definition, not a theorem or postulate.

 » If the diagonals of a quadrilateral bisect all the angles, then it’s a 
rhombus (converse of a property).

 » If the diagonals of a quadrilateral are perpendicular bisectors of each 
other, then it’s a rhombus (converse of a property).

To visualize this one, take two pens or pencils of different lengths and make 
them cross each other at right angles and at their midpoints. Their four ends 
must form a diamond shape — a rhombus.

 » If two consecutive sides of a parallelogram are congruent, then it’s a 
rhombus (neither the reverse of the definition nor the converse of a 
property).

 » If either diagonal of a parallelogram bisects two angles, then it’s a 
rhombus (neither the reverse of the definition nor the converse of a 
property).

 » If the diagonals of a parallelogram are perpendicular, then it’s a rhom-
bus (neither the reverse of the definition nor the converse of a property).

Here’s a rhombus proof for you. Try to come up with your own game plan before 
reading the two-column proof.

Given:  is a rectangle

, , and  are the midpoints
of 

ABCD

W X Z
ADD AB DC

WXY WZY

, , and , respectively

 and  are isosceles triiangles
with shared base 

Prove:  is a rhombus

WY

WXYZ  
© John Wiley & Sons, Inc.
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© John Wiley & Sons, Inc.

Squaring off with square proofs
Four ways to prove that a quadrilateral is a square: In the last three of these 
methods, you first have to prove (or be given) that the quadrilateral is a rectangle, 
rhombus, or both:
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 » If a quadrilateral has four congruent sides and four right angles, then it’s 
a square (reverse of the square definition). This is a definition, not a theorem 
or postulate.

 » If two consecutive sides of a rectangle are congruent, then it’s a square 
(neither the reverse of the definition nor the converse of a property).

 » If a rhombus contains a right angle, then it’s a square (neither the reverse 
of the definition nor the converse of a property).

 » If a quadrilateral is both a rectangle and a rhombus, then it’s a square 
(neither the reverse of the definition nor the converse of a property).

You should know these four ways to prove that you have a square, but I’ll skip the 
example proof this time. If you understand the preceding rectangle and rhombus 
proofs, you should have no trouble with any square proofs you run across.

Proving That a Quadrilateral Is a Kite
Two ways to prove that a quadrilateral is a kite: Proving that a quadrilateral is a 
kite is pretty easy. Usually, all you have to do is use congruent triangles or isosce-
les triangles. Here are the two methods:

 » If two disjoint pairs of consecutive sides of a quadrilateral are congru-
ent, then it’s a kite (reverse of the kite definition). This is a definition, not a 
theorem or postulate.

 » If one of the diagonals of a quadrilateral is the perpendicular bisector of 
the other, then it’s a kite (converse of a property).

When you’re trying to prove that a quadrilateral is a kite, the following tips may 
come in handy:

 » Check the diagram for congruent triangles. Don’t fail to spot triangles that 
look congruent and to consider how using CPCTC might help you.

 » Keep the first equidistance theorem in mind (see Chapter 9). When you 
have to prove that a quadrilateral is a kite, you may have to use the equidis-
tance theorem in which two points determine a segment’s perpendicular 
bisector.
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 » Draw in diagonals. One of the methods for proving that a quadrilateral is a 
kite involves diagonals, so if the diagram lacks either of the two diagonals, try 
drawing in one or both of them.

Now get ready for a proof:

Given:  bisects  and 
Prove:  is a kite

RS CRA CHA
CRAS

� ���

   
© John Wiley & Sons, Inc.

Game plan: Here’s how your plan of attack might work for this proof:

 » Note that one of the kite’s diagonals is missing. Draw in the missing 
diagonal, CA.

 » Check the diagram for congruent triangles. After drawing in CA, there are 
six pairs of congruent triangles. The two triangles most likely to help you are 

CRH  and ARH .

 » Prove the triangles congruent. You can use ASA (see Chapter 9).

 » Use the equidistance theorem. Use CPCTC (Chapter 9) with CRH  and 
ARH  to get CR AR and CH AH . Then, using the equidistance theorem, 

those two pairs of congruent sides determine the perpendicular bisector of 
the diagonal you drew in. Over and out.
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Check out the formal proof:

© John Wiley & Sons, Inc.

If you’re wondering why I don’t include a section about proving that a quadrilat-
eral is a trapezoid or isosceles trapezoid, that’s good — you’re on your toes. I left 
these proofs out because there’s nothing particularly interesting about them, and 
they’re easier than the proofs in this chapter. On top of that, it’s very unlikely that 
you’ll ever be asked to do one. For info on trapezoid and isosceles trapezoid prop-
erties, flip to Chapter 10.





CHAPTER 12  Polygon Formulas: Area, Angles, and Diagonals      193

IN THIS CHAPTER

Finding the area of quadrilaterals

Computing the area of regular 
polygons

Determining the number of diagonals 
in a polygon

Heating things up with the number of 
degrees in a polygon

Polygon Formulas: 
Area, Angles, 
and Diagonals

In this chapter, you take a break from proofs and move on to problems that have 
a little more to do with the real world. I emphasize little because the shapes you 
deal with here — such as trapezoids, hexagons, octagons, and, yep, even pen-

tadecagons (15 sides) — aren’t exactly things you encounter outside of math class 
on a regular basis. But at least the concepts you work with here — the size and 
shape of polygons, for example — are fairly ordinary things. For nearly everyone, 
relating to visual, real-world things like this is easier than relating to proofs, 
which are more in the realm of pure mathematics.

Calculating the Area of Quadrilaterals
I’m sure you’ve had to calculate the area of a square or rectangle before, whether 
it was in a math class or in some more practical situation, such as when you wanted 
to know the area of a room in your house. In this section, you see the square and 

Chapter 12
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rectangle formulas again, and you also get some new, gnarlier, quadrilateral area 
formulas you may not have seen before.

Setting forth the quadrilateral  
area formulas
Here are the five area formulas for the seven special quadrilaterals. There are only 
five formulas because some of them do double duty — for example, you can cal-
culate the area of a rhombus with the kite formula.

Quadrilateral area formulas (for info on types of quadrilaterals, see Chapter 10):

 » Area base heightRectangle  (or length width, which is the same thing)

 » Area base heightParallelogram  (because a rhombus is a type of parallelogram,  
you can use this formula for a rhombus)

 » Area diagonal diagonalKite
1
2 1 2, or 1

2 1 2d d  (a rhombus is also a type of kite, 

so you can use the kite formula for a rhombus as well)

 » Area sideSquare
2, or 1

2
2diagonal  (this second formula works because a 

square is a type of kite)

 » Area base base height

median height

Trapezoid
1 2

2

Note: The median of a trapezoid is the segment that connects the midpoints 
of the legs. Its length equals the average of the lengths of the bases. You use 
this formula for all trapezoids, including isosceles trapezoids.

Because the square is a special type of four quadrilaterals — a parallelogram, a 
rectangle, a kite, and a rhombus — it doesn’t really need its own area formula. 
You can find the area of a square by using the parallelogram/rectangle/rhombus 

formula (base height) or the kite/rhombus formula 1
2 1 2d d . The simple formula 

A s2 is nice to know, however, and because it’s so well known, I thought it’d 
look a bit weird to leave it off the bulleted list. Ditto for the rectangle formula — 
which is unnecessary because a rectangle is a type of parallelogram.

Getting behind the scenes of the formulas
The area formulas for the parallelogram, kite, and trapezoid are based on the area 
of a rectangle. The following figures show you how each of these three quadrilat-
erals relates to a rectangle, and the following list gives you the details:
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 » Parallelogram: In Figure 12-1, if you cut off the little triangle on the left and fill 
it in on the right, the parallelogram becomes a rectangle (and the area 
obviously hasn’t changed). This rectangle has the same base and height as the 
original parallelogram. The area of the rectangle is base height, so that 
formula gives you the area of the parallelogram as well. If you don’t believe 
me (even though you should by now), you can try this yourself by cutting out a 
paper parallelogram and snipping off the triangle as shown in Figure 12-1.

 » Kite: Figure 12-2 shows that the kite has half the area of the rectangle drawn 
around it (this follows from the fact that 1 2 3 4,  , and so on). You 
can see that the length and width of the large rectangle are the same as the 
lengths of the diagonals of the kite. The area of the rectangle (length width) 

thus equals d d1 2, and because the kite has half that area, its area is 1
2 1 2d d .

 » Trapezoid: If you cut off the two triangles and move them as I show you in 
Figure 12-3, the trapezoid becomes a rectangle. This rectangle has the same 
height as the trapezoid, and its base equals the median (m) of the trapezoid. 
Thus, the area of the rectangle (and therefore the trapezoid as well) is 
median height .

FIGURE 12-1:  
The relationship 

between a 
parallelogram 

and a rectangle. 
© John Wiley & Sons, Inc.

FIGURE 12-2:  
The kite takes up 

half of each of 
the four small 

rectangles and 
thus is half the 

area of the large 
rectangle. 

© John Wiley & Sons, Inc.
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Trying a few area problems
This section lets you try your hand at some example problems.

The key for many quadrilateral area problems is to draw altitudes and other per-
pendicular segments on the diagram. Doing so creates one or more right triangles, 
which allows you to use the Pythagorean theorem or your knowledge of special 
right triangles, such as the 45 45 90- -  and 30 60 90- -  triangles (see Chapter 8).

Identifying special right triangles  
in a parallelogram problem
Find the area of parallelogram ABCD in Figure 12-4.

When you see a 120  angle in a problem, a 30 60 90- -  triangle is likely lurking 
somewhere in the problem. (Of course, a 30  or 60  angle is a dead giveaway of a 
30 60 90- -  triangle.) And if you see a 135  angle, a 45 45 90- -  triangle is likely 
lurking.

To get started, draw in the height of the parallelogram straight down from B to 
base AD to form a right triangle as shown in Figure 12-5.

FIGURE 12-3:  
The relationship 

between a 
trapezoid and a 

rectangle. 
© John Wiley & Sons, Inc.

FIGURE 12-4:  
Use a 

30 60 90- -  
triangle to find 
the area of this 
parallelogram. 

© John Wiley & Sons, Inc.

FIGURE 12-5:  
Drawing in the 

height creates a 
right triangle. 

© John Wiley & Sons, Inc.
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Consecutive angles in a parallelogram are supplementary. Angle ABC is 120 , so  
A is 60  and ABE is thus a 30 60 90- -  triangle. Now, if you know the ratio of 

the lengths of the sides in a 30 60 90- -  triangle, x x x: :3 2  (see Chapter 8), the 
rest is a snap. AB (the 2x side) equals CD and is thus 6. Then AE (the x side) is half 
of that, or 3; BE (the x 3  side) is therefore 3 3 . Here’s the finish with the area 
formula:

Area

 units

Parallelogram b h

15 3 3

45 3 77 9 2.

Using triangles and ratios in a rhombus problem
Now for a rhombus problem: Find the area of rhombus RHOM given that MB is 6 
and that the ratio of RB to BH is 4 1:  (see Figure 12-6).

This one’s a bit tricky. You might feel that you don’t have enough information to 
solve it or that you just don’t know how to begin. If you ever feel this way when 
you’re in the middle of a problem, I have a great tip for you.

If you get stuck when doing a geometry problem — or any kind of math problem, 
for that matter — do something, anything! Begin anywhere you can: Use the given 
information or any ideas you have (try simple ideas before more-advanced ones) 
and write something down. Maybe draw a diagram if you don’t have one. Put 
something down on paper. One idea may trigger another, and before you know it, 
you’ve solved the problem. This tip is surprisingly effective.

Because the ratio of RB to BH is 4 1: , you can give RB a length of 4x and BH  a 
length of x. Then, because all sides of a rhombus are congruent, RM must equal RH, 

FIGURE 12-6:  
Find the area of 

this rhombus. 

© John Wiley & Sons, Inc.
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which is 4x x , or 5x. Now you have a right triangle ( RBM ) with legs of 4x and 
6 and a hypotenuse of 5x, so you can use the Pythagorean Theorem:

a b c

x x

x x

x

x

x

2 2 2

2 2 2

2 2

2

2

4 6 5

16 36 25

36 9

4

2 2 or 

Because side lengths must be positive, you reject the answer x 2. The length of 
the base, RH  is thus 5 2, or 10. (Triangle RBM is your old, familiar friend, a 3 4 5- -  
triangle blown up by a factor of 2 — see Chapter 8.) Now use the parallelogram/
rhombus area formula:

Area

 units

RHOM b h

10 6

60 2

Drawing in diagonals to find a kite’s area
What’s the area of kite KITE in Figure 12-7?

FIGURE 12-7:  
A kite with a 

funky side length. 
© John Wiley & Sons, Inc.
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Draw in diagonals if necessary. For kite and rhombus area problems (and some-
times other quadrilateral problems), the diagonals are almost always necessary 
for the solution (because they form right triangles). You may have to add them to 
the figure.

Draw in KT  and IE as shown in Figure 12-8.

Triangle KIT is a right triangle with congruent legs, so it’s a 45 45 90- -  triangle with 
sides in the ratio of x x x: : 2  (see Chapter 8). The length of the hypotenuse, KT ,  
thus equals one of the legs times 2; that’s 8 2 2, or 16. KX is half of that, or 8.

Triangle KIX is another 45 45 90- -  triangle (the kite’s main diagonal bisects 
opposite angles KIT and KET, and half of KIT  is 45  — see Chapter 10 for other kite 
properties); therefore, IX, like KX, is 8. You have another right triangle, KXE , 
with a side of 8 and a hypotenuse of 17. I hope that rings a bell! You’re looking at 
an 8 15 17- -  triangle (see Chapter 8), so without any work, you see that XE is 15. (No 
bells? No worries. You can get XE with the Pythagorean Theorem instead.) Add XE 
to IX, and you get 8 15 23 for diagonal IE.

Now that you know the diagonal lengths, you have what you need to finish. The 
length of diagonal KT  is 16, and diagonal IE is 23. Plug these numbers into the kite 
area formula for your final answer:

Area

 units

KITE d d1
2
1
2

16 23

184

1 2

2

FIGURE 12-8:  
Kite KITE with 
its diagonals 

drawn in. 
© John Wiley & Sons, Inc.



200      PART 4  Polygons of the Four-or-More-Sided Variety

Using the right-triangle trick for trapezoids
What’s the area of trapezoid TRAP in Figure 12-9? It looks like an isosceles trap-
ezoid, doesn’t it? Don’t forget — looks can be deceiving.

You should be thinking, right triangles, right triangles, right triangles. So draw in two 
heights straight down from R and A as shown in Figure 12-10.

You can see that QW, like RA, is 14. Then, because TP is 28, that leaves 28 14, or 
14, for the sum of TQ and WP. Next, you can assign to TQ a length of x, which gives 
WP  a length of 14 x . Now you’re all set to use — what else? — the Pythagorean 
Theorem. You have two unknowns, x and h, so to solve, you need two equations:

PAW x h

TRQ x h

:

:

14 15

13

2 2 2

2 2 2

Now solve the system of equations. First, you subtract the second equation from 
the first, column by column: Subtract the x 2 from the 14

2
x , the h2 from the h2 

(canceling it out), and the 132 from the 152. Then you solve for x.

FIGURE 12-9:  
A trapezoid  

with given  
side lengths. 

© John Wiley & Sons, Inc.

FIGURE 12-10:  
Trapezoid TRAP 

with two heights 
drawn in. 

© John Wiley & Sons, Inc.
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14 15 13

196 28 225 169

196 28 56

28 1

2 2 2 2

2 2

x x

x x x

x

x 440

5x

So TQ is 5, and TRQ is yet another Pythagorean triple triangle — the 5 12 13- -  
triangle (see Chapter 8). The height of TRAP is thus 12. (You can also get h, of 
course, by plugging x 5 into the TRQ or PAW  equations.) Now finish with the 
trapezoid area formula:

Area

 units

TRAP
b b h1 2

2

2
14 28

2
12

252

Finding the Area of Regular Polygons
In case you’ve been dying to know how to figure the area of your ordinary, octago-
nal stop sign, you’ve come to the right place. (By the way, did you know that each 
of the eight sides of a regular-size stop sign is about 12.5 inches long? Hard to 
believe, but true.) In this section, you discover how to find the area of equilateral 
triangles, hexagons, octagons, and other shapes that have equal sides and angles.

Presenting polygon area formulas
A regular polygon is equilateral (it has equal sides) and equiangular (it has equal 
angles). To find the area of a regular polygon, you use an apothem — a segment 
that joins the polygon’s center to the midpoint of any side and that is perpendicu-
lar to that side (HM  in Figure 12-11 is an apothem).

Area of a regular polygon: Use the following formula to find the area of a regular 
polygon.

Area perimeter apothem, or Regular Polygon
1
2

1
2

pa

Note: This formula is usually written as 1
2

ap, but if I do say so myself, the way I’ve 

written it, 1
2

pa, is better. I like this way of writing it because the formula is based 

on the triangle area formula, 1
2

bh: The polygon’s perimeter (p) is related to the 

triangle’s base (b), and the apothem (a) is related to the height (h).
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An equilateral triangle is the regular polygon with the fewest possible number of 
sides. To figure its area, you can use the regular polygon formula; however, it also 
has its own area formula (which you may remember from Chapter 7):

Area of an equilateral triangle: Here’s the area formula for an equilateral triangle.

Area   (where  is the length of each of Equilateral 
s s

2 3
4

tthe triangle s sides)’

Tackling more area problems
Don’t tell me about your problems; I’ve got problems of my own — and here they are.

Lifting the hex on hexagon area problems
Here’s your first regular polygon problem: What’s the area of a regular hexagon 
with an apothem of 10 3 ?

For hexagons, use 30 60 90- -  and equilateral triangles. A regular hexagon can be 
cut into six equilateral triangles, and an equilateral triangle can be divided into 
two 30 60 90- -  triangles. So if you’re doing a hexagon problem, you may want to 
cut up the figure and use equilateral triangles or 30 60 90- -  triangles to help you 
find the apothem, perimeter, or area.

First, sketch the hexagon with its three diagonals, creating six equilateral trian-
gles. Then draw in an apothem, which goes from the center to the midpoint of a 
side. Figure 12-11 shows hexagon EXAGON.

FIGURE 12-11:  
A regular 

hexagon cut into 
six congruent, 

equilateral 
triangles. 

© John Wiley & Sons, Inc.
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Note that the apothem divides OHG into two 30 60 90- -  triangles (halves of an 
equilateral triangle — see Chapter 8). The apothem is the long leg (the x 3  side) 
of a 30 60 90- -  triangle, so

x

x

3 10 3

10

OM  is the short leg (the x side), so its length is 10. OG is twice as long, so it’s 20. 
And the perimeter is six times that, or 120.

Now you can finish with either the regular polygon formula or the equilateral tri-
angle formula (multiplied by 6). They’re equally easy. Take your pick. Here’s what 
it looks like with the regular polygon formula:

Area

 units

EXAGON pa1
2
1
2

120 10 3

600 3 2

And here’s how to do it with the handy equilateral triangle formula:

Area

 units

HOG
s2

2

2

3
4

20 3
4

100 3

EXAGON is six times as big as HOG, so it’s 6 100 3, or 600 3  units2.

Picking out squares and triangles  
in an octagon problem
Check out this nifty octagon problem: Given that EIGHTPLU in Figure 12-12 is a 
regular octagon with sides of length 6 and that SUE is a right triangle,

Use a paragraph proof to show that SUE is a 45 45 90- -  triangle.

Find the area of octagon EIGHTPLU.

Here’s the paragraph proof: EIGHTPLU is a regular octagon, so all its angles are 
congruent; therefore, IEU LUE . Because supplements of congruent angles 
are congruent, SEU SUE , and thus SUE is isosceles. Finally, S  is a right 
angle, so SUE is an isosceles right triangle and therefore a 45 45 90- -  triangle.
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Now for the solution to the area part of the problem. But first, here are two great tips:

 » For octagons, use 45 45 90- -  triangles. If a problem involves a regular 
octagon, add segments to the diagram to get one or more 45 45 90- -  
triangles and some squares and rectangles to help you solve the problem.

 » Think outside the box. It’s easy to get into the habit of looking only inside a 
figure because that suffices for the vast majority of problems. But occasion-
ally, you need to break out of that rut and look outside the perimeter of the 
figure.

Okay, so here’s what you do. Draw three more 45 45 90- -  triangles to fill out the 
corners of a square as shown in Figure 12-13.

To find the area of the octagon, you just subtract the area of the four little trian-
gles from the area of the square. EU is 6. It’s the length of the hypotenuse (the 
x 2  side) of 45 45 90- -  triangle SUE, so go ahead and solve for x:

FIGURE 12-12:  
A regular octagon 

and a triangle 
named SUE. 

© John Wiley & Sons, Inc.

FIGURE 12-13:  
Drawing extra 

lines outside the 
octagon creates 

a square. 
© John Wiley & Sons, Inc.
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x

x

2 6

6
2

3 2

SU  is a leg of the 45 45 90- -  triangle, so it’s an x side and thus has a length of  
3 2 . LR  also has a length of 3 2 , so square SQAR has a side of 3 2 6 3 2 , or 
6 6 2  units.

You’re in the home stretch. First, calculate the area of the square and the area of 
a single corner triangle:

Area

Area

SQAR

SUE

s

bh

2

2
6 6 2

36 72 2 72

108 72 2

1
2
1
2

3 2 3 22

9

To finish, subtract the total area of the four corner triangles from the area of the 
square:

Area area areaEIGHTPLU SQAR SUE4

108 72 2 4 9

72 72 2 1733 8 2.  units

Using Polygon Angle and  
Diagonal Formulas

In this section, you get polygon formulas involving — hold onto your hat! — 
angles and diagonals. You can use these formulas to answer a couple of questions 
that I bet have been keeping you awake at night: 1) How many diagonals does a 
100-sided polygon have? Answer: 4,850; and 2) What’s the sum of the measures of 
all the angles in an icosagon (a 20-sided polygon)? Answer: 3 240, .
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Interior and exterior design:  
Exploring polygon angles
Everything you need to know about a polygon doesn’t necessarily fall within its 
sides. You use angles that are outside the polygon as well.

You use two kinds of angles when working with polygons (see Figure 12-14):

 » Interior angle: An interior angle of a polygon is an angle inside the polygon at 
one of its vertices. Angle Q is an interior angle of quadrilateral QUAD.

 » Exterior angle: An exterior angle of a polygon is an angle outside the polygon 
formed by one of its sides and the extension of an adjacent side. Angle ADZ, 

XUQ , and YUA are exterior angles of QUAD; vertical angle XUY is not an 
exterior angle of QUAD.

Interior and exterior angle formulas:

 » The sum of the measures of the interior angles of a polygon with n 
sides is n 2 180.

 » The measure of each interior angle of an equiangular n-gon is 
n

n
2 180

 or 
180 360

n
 (the supplement of an exterior angle).

 » If you count one exterior angle at each vertex, the sum of the measures of the 
exterior angles of a polygon is always 360 .

 » The measure of each exterior angle of an equiangular n-gon is 360
n

.

FIGURE 12-14:  
Interior and 

exterior angles. 
© John Wiley & Sons, Inc.
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Handling the ins and outs  
of a polygon angle problem
You can practice the interior and exterior angle formulas in the following three-
part problem: Given a regular dodecagon (12 sides),

1. Find the sum of the measures of its interior angles.

Just plug the number of sides (12) into the formula for the sum of the interior 
angles of a polygon:

Sum of interior angles n 2 180

12 2 180

1 800,

2. Find the measure of a single interior angle.

This polygon has 12 sides, so it has 12 angles; and because you’re dealing with 
a regular polygon, all its angles are congruent. So to find the measure of a 
single angle, just divide your answer from the first part of the problem by 12. 
(Note that this is basically the same as using the first formula for a single 
interior angle.)

Measure of a single interior angle 1 800
12

150

,

3. Find the measure of a single exterior angle with the exterior angle formula; 
then check that its supplement, an interior angle, equals the answer you got 
from part 2 of the problem.

First, plug 12 into the oh-so-simple exterior angle formula:

Measure of a single exterior angle 360
12

30

Now take the supplement of your answer to find the measure of a single 
interior angle, and check that it’s the same as your answer from part 2:

Measure of a single interior angle 180 30

150

It checks. (And note that this final computation is basically the same thing as 
using the second formula for a single interior angle.)
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Criss-crossing with diagonals
Number of diagonals in an n-gon: The number of diagonals that you can draw in 

an n-gon is 
n n 3

2
.

This formula looks like it came outta nowhere, doesn’t it? I promise it makes 
sense, but you might have to think about it a little first. (Of course, just memoriz-
ing it is okay, but what’s the fun in that?)

Here’s where the diagonal formula comes from and why it works. Each diagonal 
connects one point to another point in the polygon that isn’t its next-door neigh-
bor. In an n-sided polygon, you have n starting points for diagonals. And each 
diagonal can go to n 3  ending points because a diagonal can’t end at its own 
starting point or at either of the two neighboring points. So the first step is to 
multiply n by n 3 . Then, because each diagonal’s ending point can be used as a 
starting point as well, the product n n 3  counts each diagonal twice. That’s why 
you divide by 2.

Here’s one last problem for you: If a polygon has 90 diagonals, how many sides 
does it have?

You know what the formula for the number of diagonals in a polygon is, and you 
know that the polygon has 90 diagonals, so plug 90 in for the answer and solve 
for n:

n n

n n

n n

n n

3
2

90

3 180

3 180 0

15 12 0

2

2

Thus, n equals 15 or –12. But because a polygon can’t have a negative number of 
sides, n must be 15. So you have a 15-sided polygon (a pentadecagon, in case you’re 
curious).
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A ROUND-ROBIN TENNIS TOURNEY
Here’s a nifty real-world application of the formula for the number of diagonals in a 
polygon. Say there’s a small tennis tournament with six people in which everyone has to 
play everyone else. How many total matches will there be? The following figure shows 
the six tennis players with segments connecting each pair of players.

© John Wiley & Sons, Inc.

Each segment represents a match between two contestants. So to get the total number 
of matches, you just have to count up all the segments in the figure: the number of 

sides of the hexagon (6) plus the number of diagonals in the hexagon 
6 6 3

2
9 . 

The total is therefore 15 matches. For the general case, the total number of matches in 

a round-robin tournament with n players would be n
n n 3

2
, which simplifies to 

n n 1
2

. Game, set, match.
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IN THIS CHAPTER

Sizing up similar figures

Doing similar triangle proofs and 
using CASTC and CSSTP

Scoping out theorems about 
proportionality

Similarity: Same 
Shape, Different Size

You know the meaning of the word similar in everyday speech. In geometry, 
it has a related but more technical meaning. Two figures are similar if they 
have exactly the same shape. You get similar figures, for example, when 

you use a photocopy machine to blow up some image. The result is bigger but 
exactly the same shape as the original. And photographs show shapes that are 
smaller than but geometrically similar to the original objects.

You witness similarity in action virtually every minute of the day. As you see 
things (people, objects, anything) moving toward or away from you, you see them 
appear to get bigger or smaller, but they retain their same shape. The shape of this 
book is a rectangle. If you hold it close to you, you see a rectangular shape of a 
certain size. When you hold it farther away, you see a smaller but similar rectangle. 
In this chapter, I show you all sorts of interesting things about similarity and how 
it’s used in geometry.

Note: Congruent figures are automatically similar, but when you have two congru-
ent figures, you call them congruent, naturally; you don’t have much reason to 
point out that they’re also similar (the same shape) because it’s so obvious. So even 
though congruent figures qualify as similar figures, problems about similarity 
usually deal with figures of the same shape but different size.

Chapter 13
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Getting Started with Similar Figures
In this section, I cover the formal definition of similarity, how similar figures are 
named, and how they’re positioned. Then you get to practice these ideas by working 
though a problem.

Defining and naming similar polygons
As you see in Figure 13-1, quadrilateral WXYZ is the same shape as quadrilateral 
ABCD, but it’s ten times larger (though not drawn to scale, of course). These 
quadrilaterals are therefore similar.

Similar polygons: For two polygons to be similar, both of the following must be true:

 » Corresponding angles are congruent.

 » Corresponding sides are proportional.

To fully understand this definition, you have to know what corresponding angles 
and corresponding sides mean. (Maybe you’ve already figured this out by just look-
ing at the figure.) Here’s the lowdown on corresponding. In Figure  13-1, if you 
expand ABCD to the same size as WXYZ and slide it to the right, it’d stack perfectly 
on top of WXYZ. A would stack on W, B on X, C on Y, and D on Z. These vertices 
are thus corresponding. And therefore, you say that A corresponds to W , B 
corresponds to X , and so on. Also, side AB corresponds to side WX , BC  to XY , 
and so on. In short, if one of two similar figures is expanded or shrunk to the size 
of the other, angles and sides that would stack on each other are called 
corresponding.

FIGURE 13-1:  
These quadrilat-
erals are similar 
because they’re 

exactly the same 
shape; note that 
their angles are 

congruent. 
© John Wiley & Sons, Inc.
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When you name similar polygons, pay attention to how the vertices pair up. For 
the quadrilaterals in Figure 13-1, you write that ABCD WXYZ~  (the squiggle sym-
bol means is similar to) because A and W (the first letters) are corresponding ver-
tices, B and X (the second letters) are corresponding, and so on. You can also write 
BCDA XYZW~  (because corresponding vertices pair up) but not ABCD YZWX~ .

Now I’ll use quadrilaterals ABCD and WXYZ to explore the definition of similar 
polygons in greater depth:

 » Corresponding angles are congruent. You can see that A and W  are 
both 105  and therefore congruent, B X , and so on. When you blow up 
or shrink a figure, the angles don’t change.

 » Corresponding sides are proportional. The ratios of corresponding sides 
are equal, like this:

Left side
Left side

top
top

right side
ri

WXYZ

ABCD

WXYZ

ABCD

WXYZ

gght side
base
baseABCD

WXYZ

ABCD

WX
AB

XY
BC

YZ
CD

ZW
DA

110
11

150
115

40
4

80
8

10

Each ratio equals 10, the expansion factor. (If the ratios were flipped upside 
down — which is equally valid — each would equal 1

10
, the shrink factor.) And 

not only do these ratios all equal 10, but the ratio of the perimeters of WXYZ to 
ABCD also equals 10.

Perimeters of similar polygons: The ratio of the perimeters of two similar polygons 
equals the ratio of any pair of their corresponding sides.

How similar figures line up
Two similar figures can be positioned so that they either line up or don’t line up. 
You can see that figures ABCD and WXYZ in Figure 13-1 are positioned in the same 
way in the sense that if you were to blow up ABCD to the size of WXYZ and then 
slide ABCD over, it’d match up perfectly with WXYZ. Now check out Figure 13-2, 
which shows ABCD again with another similar quadrilateral. You can easily see 
that, unlike the quadrilaterals in Figure 13-1, ABCD and PQRS are not positioned 
in the same way.

In the preceding section, you see how to set up a proportion for similar figures 
using the positions of their sides, which I’ve labeled left side, right side, top, and base —  

for example, one valid proportion is Left side
Left side

top
top

 (note that both numerators  
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must come from the same figure; ditto for both denominators). This is a good way 
to think about how proportions work with similar figures, but proportions like 
this work only if the figures are drawn like ABCD and WXYZ are. When similar 
 figures are drawn facing different ways, as in Figure 13-2, the left side doesn’t 
necessarily correspond to the left side, and so on, and you have to take greater 
care that you’re pairing up the proper vertices and sides.

Quadrilaterals ABCD and PQRS are similar, but you can’t say that ABCD PQRS~  
because the vertices don’t pair up in this order. Ignoring its size, PQRS is the mirror 
image of ABCD (or you can say it’s flipped over compared with ABCD). If you flip 
PQRS over in the left-right direction, you get the image in Figure 13-3.

Now it’s easier to see how the vertices pair up. A corresponds to S, B with R, and 
so on, so you write the similarity like this: ABCD SRQP~ .

FIGURE 13-2:  
Similar quadrilat-

erals that aren’t 
lined up. 

© John Wiley & Sons, Inc.

FIGURE 13-3:  
Flipping PQRS 
over to make 

SRQP lines it up 
nicely with 

ABCD — pure 
poetry! © John Wiley & Sons, Inc.
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Align similar polygons. If you get a problem with a diagram of similar polygons 
that aren’t lined up, consider redrawing one of them so that they’re both posi-
tioned in the same way. This may make the problem easier to solve.

And here are a few more things you can do to help you see how the vertices of 
similar polygons match up when the polygons are positioned differently:

 » You can often tell how the vertices correspond just by looking at the polygons, 
which is actually a pretty good way of seeing whether one polygon has been 
flipped over or spun around.

 » If the similarity is given to you and written out like JKL TUV~ , you know 
that the first letters, J and T, correspond, K and U correspond, and L and V 
correspond. The order of the letters also tells you that KL corresponds to UV , 
and so on.

 » If you know the measures of the angles or which angles are congruent to 
which, that information tells you how the vertices correspond because 
corresponding angles are congruent.

 » If you’re given (or you figure out) which sides are proportional, that info tells 
you how the sides would stack up, and from that you can see how the vertices 
correspond.

Solving a similarity problem
Enough of this general stuff — time to see these ideas in action:

Given:

Perimeter of  is 52

Find:  The lengt

ROTFL SUBAG

ROTFL

~

.1 hhs of  

and 

 The perimeter of 

 The measures o

AG

GS

SUBAG

2

3

.

. ff 

, , and AS G  
© John Wiley & Sons, Inc.

You can see that ROTFL and SUBAG aren’t positioned the same way just by look-
ing at the figure (and noting that their first letters, R and S, aren’t in the same 
place). So you need to figure out how their vertices correspond. Try using one of 
the methods from the bulleted list in the preceding section. The letters in 
ROTFL SUBAG~  show you what corresponds to what. R corresponds to S, O 
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 corresponds to U, and so on. (By the way, do you see what you’d have to do to line 
up SUBAG with ROTFL? SUBAG has sort of been tipped over to the right, so you’d 
have to rotate it counterclockwise a bit and stand it up on base GS . You may want 
to redraw SUBAG like that, which can really help you see how all the parts of the 
two pentagons correspond.)

1. Find the lengths of AG and GS .

The order of the vertices in ROTFL SUBAG~  tells you that SU  corresponds to 
RO and that AG corresponds to FL; thus, you can set up the following 
proportion to find missing length AG:

AG
FL

SU
RO

AG

AG
10

12
8

10
1 5. (or you could have cross-multiplieed)

AG 15

This method of setting up a proportion and solving for the unknown length is 
the standard way of solving this type of problem. It’s often useful, and you 
should know how to do it (including knowing how to cross-multiply).

But another method can come in handy. Here’s how to use it to find GS: Divide  
the lengths of two known corresponding sides of the figures like this: SU

RO
12
8

,  

which equals 1.5. That answer tells you that all the sides of SUBAG (and its 
perimeter) are 1.5 times as long as their counterparts in ROTFL. The order of 
the vertices in ROTFL SUBAG~  tells you that GS  corresponds to LR; thus, GS  
is 1.5 times as long as LR:

GS LR1 5

1 5 9

13 5

.

.

.

2. Find the perimeter of SUBAG.

The method I just introduced tells you immediately that

Perimeter perimeterSUBAG ROTFL1 5

1 5 52

78

.

.

But for math teachers and other fans of formality, here’s the standard method 
using cross-multiplication:
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Perimeter
Perimeter

SUBAG

ROTFL

SU
RO

P

P

P

52
12
8

8 52 12

78

3. Find the measures of S, G , and A.

S corresponds to R, G corresponds to L, and A corresponds to F, so

• Angle S is the same as R , or 100 .

• Angle G is the same as RLF , which is 120  (the supplement of the 60  
angle).

To get A, you first have to find F  with the sum-of-angles formula from 
Chapter 12:

Sum of anglesPentagon ROTFL n 2 180

5 2 180

540

Because the other four angles of ROTFL (clockwise from L) add up to 
120 100 120 75 415 , F , and therefore A, must equal 
540 415 , or 125 .

Proving Triangles Similar
Chapter 9 explains five ways to prove triangles congruent: SSS, SAS, ASA, AAS, 
and HLR. In this section, I show you something related — the three ways to prove 
triangles similar: AA, SSS~, and SAS~.

Use the following methods to prove triangles similar:

 » AA: If two angles of one triangle are congruent to two angles of another 
triangle, then the triangles are similar.

 » SSS~: If the ratios of the three pairs of corresponding sides of two triangles 
are equal, then the triangles are similar.

 » SAS~: If the ratios of two pairs of corresponding sides of two triangles are 
equal and the included angles are congruent, then the triangles are similar.
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In the sections that follow, I dive into some problems so you can see how these 
methods work.

Tackling an AA proof
The AA method is the most frequently used and is therefore the most important. 
Luckily, it’s also the easiest of the three methods to use. Give it a whirl with the 
following proof:

Given:  is supplementary to 2

Prove:

1

AY LR

CYA LTR



~  

© John Wiley & Sons, Inc.

Whenever you see parallel lines in a similar-triangle problem, look for ways to use 
the parallel-line theorems from Chapter 10 to get congruent angles.

Here’s a game plan describing how your thought process might go (this hypo-
thetical thought process assumes that you don’t know that this is an AA proof 
from the title of this section): The first given is about angles, and the second given 
is about parallel lines, which will probably tell you something about congruent 
angles. Therefore, this proof is almost certainly an AA proof. So all you have to do 
is think about the givens and figure out which two pairs of angles you can prove 
congruent to use for AA. Duck soup.
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Take a look at how the proof plays out:

© John Wiley & Sons, Inc.

Using SSS~ to prove triangles similar
The upcoming SSS~ proof incorporates the midline theorem, which I present to 
you here.

The Midline Theorem: A segment joining the midpoints of two sides of a triangle is

 » One-half the length of the third side

 » Parallel to the third side

Figure 13-4 provides the visual for the theorem.

FIGURE 13-4:  
A segment joining 

the midpoints of 
two sides of a 

triangle is parallel 
to and half  

as long as the 
third side. 

© John Wiley & Sons, Inc.
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Check out this theorem in action with an SSS~ proof:

Given: , , and  are the
midpoints of , , and

 respec

A W Y
KN KE

NE ttively

Prove: In a paragraph proof, show
that  usinWAY NEK~ gg
1. The first part of the
    midline theorem

2. The second  part of the
    midline theorem  

© John Wiley & Sons, Inc.

1. Use the first part of the midline theorem to prove that WAY NEK~ .

Here’s the solution: The first part of the midline theorem says that a segment 
connecting the midpoints of two sides of a triangle is half the length of the 
third side. You have three such segments: AY  is half the length of KE ,  WY  is 
half the length of KN , and AW  is half the length of NE . That gives you the 
proportionality you need: AY

KE
WY
KN

AW
NE

1
2

. Thus, the triangles are 
similar by SSS~.

2. Use part two of the midline theorem to prove that WAY NEK~ .

Solve this one as follows: The second part of the midline theorem tells you that 
a segment connecting the midpoints of two sides of a triangle is parallel to the 
third side. You have three segments like this in the diagram, AY , WY , and AW , 
each of which is parallel to a side of NEK . The pairs of parallel segments 
should make you think about using the parallel-line theorems (from 
Chapter 10), which could give you the congruent angles you need to prove the 
triangles similar with AA.

Look at parallel segments AY  and KE , with transversal NE . You can see that 
E  is congruent to AYN  because corresponding angles (the parallel-line 

kind of corresponding) are congruent.

Now look at parallel segments AW  and NE , with transversal AY . Angle AYN is 
congruent to WAY  because they’re alternate interior angles. So by the 
transitive property, E WAY .

With identical reasoning, you next show that K WYA or that 
N AWY . And that does it. The triangles are similar by AA.
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Working through an SAS~ proof
Try using the SAS~ method to solve the following proof:

Given:

Prove:
(paragraph form)

BOA BYT

BAT BOY

~

~
    

© John Wiley & Sons, Inc.

Game plan: Your thinking might go like this. You have one pair of congruent 
angles, the vertical angles ABT  and OBY . But because it doesn’t look like you 
can get another pair of congruent angles, the AA approach is out. What other 
method can you try? You’re given side lengths in the figure, so the combination of 
angles and sides should make you think of SAS~. To prove BAT BOY~  with 
SAS~, you need to find the length of BT  so you can show that BA and BT  (the sides 
that make up ABT ) are proportional to BO  and BY  (the sides that make up 

OBY ). To find BT, you can use the similarity in the given.

So you begin solving the problem by figuring out the length of BT . BOA BYT~ , 
so — paying attention to the order of the letters — you see that BO  corresponds to 
BY  and that BA corresponds to BT . Thus, you can set up this proportion:

BO
BY

BA
BT

BT
BT

BT

20
16

5

20 16 5

4

Now, to prove BAT BOY~  with SAS~, you use the congruent vertical angles 
and then check that the following proportion works:

BA
BO

BT
BY

?

?5
20

4
16

This checks. You’re done. (By the way, these fractions both reduce to 1
4

, so BAT  

is 1
4

 as big as BOY .)
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CASTC and CSSTP, the Cousins of CPCTC
In this section, you prove triangles similar (as in the preceding section) and then 
go a step further to prove other things about the triangles using CASTC and CSSTP 
(which are just acronyms for the parts of the definition of similar polygons, as 
applied to triangles).

Similar triangles have the following two characteristics:

 » CASTC: Corresponding angles of similar triangles are congruent.

 » CSSTP: Corresponding sides of similar triangles are proportional.

This definition of similar triangles follows from the definition of similar poly-
gons, and thus it isn’t really a new idea, so you might wonder why it deserves an 
icon. Well, what’s new here isn’t the definition itself; it’s how you use the defini-
tion in two-column proofs.

CASTC and CSSTP work just like CPCTC. In a two-column proof, you use CASTC or 
CSSTP on the very next line after showing triangles similar, just like you use 
CPCTC (see Chapter 9) on the line after you show triangles congruent.

Working through a CASTC proof
The following proof shows you how CASTC works:

Given: Diagram as shown

Prove:
(paragraph proof)
AB DE
� ���
�
� ���

  
© John Wiley & Sons, Inc.

Here’s how your game plan might go: When you see the two triangles in this proof 
diagram and you’re asked to prove that the lines are parallel, you should be think-
ing about proving the triangles similar. If you could do that, then you could use 
CASTC to get congruent angles, and then you could use those congruent angles 
with the parallel-line theorems (from Chapter 10) to finish.
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So here’s the solution. You have the pair of congruent vertical angles, 3 and 4, 
so if you could show that the sides that make up those angles are proportional, the 
triangles would be similar by SAS~. So check that the sides are proportional:

AC
EC

BC
DC

x
x

y
y

?

?3
6

5
10

1
2

1
2

Check. Thus, ABC EDC~  by SAS~. (Note that the similarity is written so that 
corresponding vertices pair up.) Vertices B and D correspond, so 2 5 by 
CASTC. Because 2 and 5 are alternate interior angles that are congruent, 
AB DE
� ���
�
� ���

. (Note that you could instead show that 1 and 6 are congruent by 
CASTC and then use those angles as the alternate interior angles.)

Taking on a CSSTP proof
CSSTP proofs can be a bit trickier than CASTC proofs because they often involve an 
odd step at the end in which you have to prove that one product of sides equals 
another product of sides. You’ll see what I mean in the following problem:

Given:  is
isosceles with
base 

Prove:

LMN

LN

JL NP QN LK

1 8

  
© John Wiley & Sons, Inc.

You can often use a proportion to prove that two products are equal; therefore, if 
you’re asked to prove that a product equals another product (as with 
JL NP QN LK ), the proof probably involves a proportion related to similar tri-
angles (or maybe, though less likely, a proportion related to one of the theorems 
in the upcoming sections). So look for similar triangles that contain the four 
 segments in the prove statement. You can then set up a proportion using those 
four segments and finally cross-multiply to arrive at the desired product.
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Here’s the formal proof:

© John Wiley & Sons, Inc.

Splitting Right Triangles with the  
Altitude-on-Hypotenuse Theorem

In a right triangle, the altitude that’s perpendicular to the hypotenuse has a 
 special property: It creates two smaller right triangles that are both similar to the 
original right triangle.

Altitude-on-Hypotenuse Theorem: If an altitude is drawn to the hypotenuse of a 
right triangle, as shown in Figure 13-5, then
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 » The two triangles formed are similar to the given triangle and to each other:

ACB ADC CDB~ ~

 » h xy2 ,

 » a yc2  and b xc2

Note that the two equations in this third bullet are really just one idea, not two. 
The idea works exactly the same way on both sides of the big triangle:

leg of big part of hypotenuse below it whole hypote
2

nnuse

Here’s a two-part problem for you: Use Figure  13-6 to answer the following 
questions.

1. If JL 17 and KL 15, what are JK, JM, ML, and KM?

Here’s how you do this one: JK is 8 because you have an 8-15-17 triangle (or 
you can get JK with the Pythagorean Theorem; see Chapter 8 for more info). 

FIGURE 13-5:  
Three similar 

right triangles: 
small, medium, 

and large. 
© John Wiley & Sons, Inc.

FIGURE 13-6:  
Altitude KM  lets 

you apply the 
altitude-on- 
hypotenuse 

theorem. 
© John Wiley & Sons, Inc.
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Now you can find JM and ML using part three of the altitude-on-hypotenuse 
theorem:

JK JM JL

JM

JM

KL ML JL

ML

2

2

2

28 17

64
17

3 8

15 1

.

and 77

225
17

13 2JM .

(I included the ML solution just to show you another example of the theorem, 
but obviously, it would’ve been easier to get ML by just subtracting JM from JL.)

Finally, use the second part of the theorem (or the Pythagorean Theorem, if 
you prefer) to get KM:

KM JM ML

KM

KM

2

2 64
17

225
17

14 400
289

120
17

7 1, .

2. If ML 16 and JK 15, what’s JM? (Note that none of the information from 
question 1 applies to this second question.)

Set JM equal to x; then use part three of the theorem.

JK JM JL

x x

x x

x x

x x

2

2

2

2

15 16

225 16

16 225 0

9 25 0

9 0

9

25 0

25

x

x

x

x

or

or

You know that a length can’t be –25, so JM 9. (If you have a hard time seeing 
how to factor this one, you can use the quadratic formula to get the values of x 
instead.)

When doing a problem involving an altitude-on-hypotenuse diagram, don’t assume 
that you must use the second or third part of the altitude-on-hypotenuse theorem. 
Sometimes, the easiest way to solve the problem is with the Pythagorean Theo-
rem. And at other times, you can use ordinary similar-triangle proportions to 
solve the problem.

The next problem illustrates this tip: Use the following figure to find h, the  altitude 
of ABC .
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© John Wiley & Sons, Inc.

First get AC with the Pythagorean Theorem or by noticing that you have a triangle 
in the 3 4 5: :  family — namely a 9 12 15- -  triangle. So AC 15. Then, though you 
could finish with the altitude-on-hypotenuse theorem, that approach is a bit 
complicated and would take some work. Instead, just use an ordinary similar-
triangle proportion:

Long leg
Long leg

hypotenuse
hypotenuse

ABD

ACB

ABD

ACB

h
12

9
115

15 108

7 2

h

h .

Finito.

Getting Proportional with  
Three More Theorems

In this section, you get three theorems that involve proportions in one way or 
another. The first of these theorems is a close relative of CSSTP, and the second is 
a distant relative (see the earlier section titled “CASTC and CSSTP, the Cousins of 
CPCTC” for details on similar-triangle proportions). The third theorem is no kin 
at all.

The side-splitter theorem: It’ll make  
you split your sides
The side-splitter theorem isn’t really necessary because the problems in which 
you use it involve similar triangles, so you can solve them with the ordinary 
 similar-triangle proportions I present earlier in this chapter. The side-splitter 
theorem just gives you an alternative, shortcut solution method.
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Side-Splitter Theorem: If a line is parallel to a side of a triangle and it intersects 
the other two sides, it divides those sides proportionally. See Figure 13-7.

Check out the following problem, which shows this theorem in action:

Given:

Prove:
(paragraph proof)

Find:  and 

PQ TR
PQS TRS

x y



~

  
© John Wiley & Sons, Inc.

Here’s the proof: Because PQ TR , Q and TRS  are congruent corresponding 
angles (that’s corresponding in the parallel-lines sense — see Chapter 10 — but 
these angles also turn out to be corresponding in the similar-triangle sense. Get it?) 
Then, because both triangles contain S , the triangles are similar by AA.

Now find x and y. Because PQ TR , you use the side-splitter theorem to get x:

x

x

x

15
3
9

9 45

5

And here’s the solution for y: First, don’t fall for the trap and conclude that y 4. 
This is a doubly sneaky trap that I’m especially proud of. Side y looks like it should 
equal 4 for two reasons: First, you could jump to the erroneous conclusion that 

TRS is a 3 4 5- -  right triangle. But nothing tells you that TRS  is a right angle, so 
you can’t conclude that.

FIGURE 13-7:  
A line parallel to a 

side of a triangle 
cuts the other 

two sides 
proportionally. 

© John Wiley & Sons, Inc.
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Second, when you see the ratios of 9 3:  (along QS) and 15 5:  (along PS , after solv-
ing for x), both of which reduce to 3 1: , it looks like PQ and y should be in the same 
3 1:  ratio. That would make PQ y:  a 12 4:  ratio, which again leads to the wrong 
answer that y is 4. The answer comes out wrong because this thought process 
amounts to using the side-splitter theorem for the sides that aren’t split — which 
you aren’t allowed to do.

Don’t use the side-splitter theorem on sides that aren’t split. You can use the side-
splitter theorem only for the four segments on the split sides of the triangle. Do not 
use it for the parallel sides, which are in a different ratio. For the parallel sides, use 
similar-triangle proportions. (Whenever a triangle is divided by a line parallel to 
one of its sides, the triangle created is similar to the original, large triangle.)

So finally, the correct way to get y is to use an ordinary similar-triangle propor-
tion. The triangles in this problem are positioned the same way, so you can write 
the following:

Left side
Left side

base
base

TRS

PQS

TRS

PQS

y

y

y

12
5

20
20 60

33

That’s a wrap.

Crossroads: The side-splitter  
theorem  extended
This next theorem takes the side-splitter principle and generalizes it, giving it a 
broader context. With the side-splitter theorem, you draw one parallel line that 
divides a triangle’s sides proportionally. With this next theorem, you can draw 
any number of parallel lines that cut any lines (not just a triangle’s sides) 
proportionally.

Extension of the Side-Splitter Theorem: If three or more parallel lines are inter-
sected by two or more transversals, the parallel lines divide the transversals 
proportionally.

See Figure 13-8. Given that the horizontal lines are parallel, the following proportions 
(among others) follow from the theorem:

AB
BC

PQ
QR

PQ
QR

WX
XY

PR
RS

WY
YZ

AD
BC

WZ
XY

QS
PQ

XZ
WX

, , , , 
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Ready for a problem? Here goes nothing:

Given: , ,
, 

Find:     

AB BD
FJ KM
MN

CD BC FG GH

12 32
33 45
10

,

, , , , HHJ
KL LM

,
,  and  

© John Wiley & Sons, Inc.

This is a long process, so I go through the unknown lengths one by one.

1. Set up a proportion to get CD.

CD
AD

MN
KN

CD

CD

CD

44
10
55

55 44 10

8

2. Now just subtract CD from BD to get BC.

BD CD BC

BC

BC

32 8

24

FIGURE 13-8:  
The parallel lines 

divide the three 
transversals 

proportionally. 
© John Wiley & Sons, Inc.
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3. Skip over the segments that make up FJ  for a minute and use a proportion 
to find KL.

AB
CD

KL
MN
KL

KL

KL

12
8 10

8 12 10

15

4. Subtract to get LM.

KM KL LM

LM

LM

45 15

30

5. To solve for the parts of FJ , use the total length of FJ  and the lengths  
along AD .

To get FG, GH, and HJ, note that because the ratio AB BC CD: :  is 12 24 8: : , 
which reduces to 3 6 2: : , the ratio of FG GH HJ: :  must also equal 3 6 2: : . So 
let FG x3 , GH x6 , and HJ x2 . Because you’re given the length of FJ , 
you know that these three segments must add up to 33:

3 6 2 33

11 33

3

x x x

x

x

So FG 3 3 9, GH 6 3 18, and HJ 2 3 6. A veritable walk  
in the park.

The angle-bisector theorem
In this final section, you get another theorem involving a proportion; but unlike 
everything else in this chapter, this theorem has nothing to do with similarity. 
(The extension of the side-splitter theorem in the preceding section may not look 
like it involves similarity, but it is subtly related.)

Angle-Bisector Theorem: If a ray bisects an angle of a triangle, then it divides the 
opposite side into segments that are proportional to the other two sides. See 
Figure 13-9.

When you bisect an angle of a triangle, you never get similar triangles (unless you 
bisect the vertex angle of an isosceles triangle, in which case the angle bisector 
divides the triangle into two triangles that are congruent as well as similar).



232      PART 4  Polygons of the Four-or-More-Sided Variety

Don’t forget the angle-bisector theorem. (For some reason, students often do 
 forget this theorem.) So whenever you see a triangle with one of its angles bisected, 
consider using the theorem.

How about an angle-bisector problem? Why? Oh, just BCUZ.

Given: Diagram as shown

Find:     and 

 The are

1

2

. , , ,

.

BZ CU UZ BU

aa of  and BCU BUZ   
© John Wiley & Sons, Inc.

1. Find BZ, CU, UZ, and BU.

You get BZ with the Pythagorean Theorem (6 82 2 2c ) or by noticing that 
BCZ  is in the 3 4 5: :  family. It’s a 6 8 10- -  triangle, so BZ is 10.

Next, set CU equal to x and UZ equal to 8 x . Set up the angle-bisector 
proportion and solve for x:

6
10 8

48 6 10

48 16

3

x
x

x x

x

x

So CU is 3 and UZ is 5.

The Pythagorean Theorem then gives you BU:

BU

BU

BU

2 2 2

2

6 3

45

45 3 5 6 7.

FIGURE 13-9:  
Because the 

angle is bisected, 
segments c and d 
are proportional 
to sides a and b. 

© John Wiley & Sons, Inc.
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2. Calculate the area of BCU  and BUZ .

Both triangles have a height of 6 (when you use CU  and UZ  as their bases), so 
just use the triangle area formula:

Area

Area  units

Area  units

1
2

1
2

3 6 9

1
2

5 6 15

2

bh

BCU

BUZ
22

Note that this ratio of triangle areas, 9 15: , is equal to the ratio of the triangles’ 
bases, 3 5: . This equality holds whenever a triangle is divided into two triangles 
with a segment from one of its vertices to the opposite side (whether or not this 
segment cuts the vertex angle exactly in half).





5Working with 
Not-So-Vicious 
Circles



IN THIS PART . . .

Discover some of the circle’s most fundamental 
properties.

Investigate formulas and theorems about circles and 
the connections among circles, angles, arcs, and 
various segments associated with circles.
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IN THIS CHAPTER

Segments inside circles: Radii and 
chords

The Three Musketeers: Arcs, central 
angles, and chords

Common-tangent and walk-around 
problems

Coming Around to 
Circle Basics

In a sense, the circle is the simplest of all shapes — one smooth curve that’s 
always the same distance from the circle’s center: no corners, no irregularities, 
the same simple shape no matter how you turn it. On the other hand, that 

simple curve involves the number pi ( 3 14159. ), and nothing’s simple about 
that. It goes on forever with no repeating pattern of digits. Despite the fact that 
mathematicians have been studying the circle and the number π for over 2,000 
years, many unsolved mysteries about them remain.

The circle is also, perhaps, the most common shape in the natural world (if you 
count spheres, which are, of course, circular and whose surfaces contain an infi-
nite collection of circles). The 1021 (or 1,000,000,000,000,000,000,000) stars in 
the universe are spherical. The tiny droplets of water in a cloud are spherical (one 
cloud can contain trillions of droplets). Throw a pebble in a pond, and the waves 
propagate outward in circular rings. The Earth travels around the sun in a circular 
orbit (okay, it’s actually an ellipse for you astronomical nitpickers out there; 
though it’s extremely close to a circle). And right this very minute, you’re traveling 
in a circular path as the Earth rotates on its axis.

In this chapter, you investigate some of the circle’s most fundamental properties. 
Time to get started.

Chapter 14
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The Straight Talk on Circles:  
Radii and Chords

I doubt you need a definition for circle, but for those of you who love math-speak, 
here’s the fancy-pants definition.

Circle: A circle is a set of all points in a plane that are equidistant from a single 
point (the circle’s center).

In the following sections, I talk about the three main types of line segments that 
you find inside a circle: radii, chords, and diameters. Although starting with all 
these straight things in a chapter on curving circles may seem a bit strange, some 
of the most interesting and important theorems about circles stem from these 
three segments. You later get to explore these theorems with some circle 
problems.

Defining radii, chords, and diameters
Here are three terms that are fundamental to your investigation of the circle:

 » Radius: A circle’s radius — the distance from its center to a point on the 
circle — tells you the circle’s size. In addition to being a measure of distance,  
a radius is also a segment that goes from a circle’s center to a point on 
the circle.

 » Chord: A segment that connects two points on a circle is called a chord.

 » Diameter: A chord that passes through a circle’s center is a diameter of the 
circle. A circle’s diameter is twice as long as its radius.

Figure 14-1 shows circle O with diameter AB (which is also a chord), radii OA, OB, 
and OC , and chord PQ.

Introducing five circle theorems
I hope you have some available space on your mental hard drive for more theo-
rems. (If not, maybe you can free up some room by deleting a few not-so-useful 
facts, such as the date of the Battle of Hastings, 1066 A.D.) In this section, you get 
five important theorems about the properties of the segments inside a circle.
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These theorems tell you about radii and chords (note that two of these theorems 
work in both directions):

 » Radii size: All radii of a circle are congruent.

 » Perpendicularity and bisected chords:

• If a radius is perpendicular to a chord, then it bisects the chord.

• If a radius bisects a chord (that isn’t a diameter), then it’s perpendicular to 
the chord.

 » Distance and chord size:

• If two chords of a circle are equidistant from the center of the circle, then 
they’re congruent.

• If two chords of a circle are congruent, then they’re equidistant from its 
center.

Working through a proof
Here’s a proof that uses three of the theorems from the preceding section:

Given: Circle 

 is the midpoint of 

Prove:  

G

F AE

GB CA

GD CE

BCDG iis a kite  
© John Wiley & Sons, Inc.

FIGURE 14-1:  
Straight stuff 

inside a curving 
circle. 

© John Wiley & Sons, Inc.
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Before reading the proof, you may want to make your own game plan.

© John Wiley & Sons, Inc.

Using extra radii to solve a problem
Realtors like to say (only half jokingly) that when buying a home, the three most 
important factors are location, location, location. For solving circle problems, it’s 
radii, radii, radii. It can’t be overemphasized how important it is to notice all the 
radii in a circle diagram and to look for where other radii might be added to the 
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diagram. You often need to add radii and partial radii to create right triangles or 
isosceles triangles that you can then use to solve the problem. Here’s what you do 
in greater detail:

 » Draw additional radii on the figure. You should draw radii to points where 
something else intersects or touches the circle, as opposed to just any old 
point on the circle.

 » Open your eyes and notice all the radii — including new ones you’ve 
drawn — and mark them all congruent. For some reason — even though 
all radii are congruent is one of the simplest geometry theorems — people 
frequently either fail to notice all the radii in a problem or fail to note that 
they’re congruent.

 » Draw in the segment (part of a radius) that goes from the center of a 
circle to a chord and that’s perpendicular to the chord. This segment 
bisects the chord (I mention this theorem in the preceding section).

Now check out the following problem: Find the area of inscribed quadrilateral 
GHJK shown on the left. The circle has a radius of 2.

The tip that leads off this section gives you two hints for this problem. The first 
hint is to draw in the four radii to the four vertices of the quadrilateral as shown 
in the figure on the right.

 
© John Wiley & Sons, Inc.
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Now you simply need to find the area of the individual triangles. You can see  
that JKC  is equilateral, so you can use the equilateral triangle formula (from  
Chapter 7) for this one:

Area  unitss2 2
23

4
2 3

4
3

And if you’re on the ball, you should recognize triangles GHC and HJC. Their sides 
are in the ratio of 2 2 2 2: : , which reduces to 1 1 2: : ; thus, they’re 45 45 90- -  
triangles (see Chapter  8). You already know the base and height of these two  
triangles, so getting their areas should be a snap. For each triangle,

Area  units1
2

1
2

2 2 2 2bh

Another hint from the tip helps you with KGC . Draw its altitude (a partial radius) 
from C to GK . This radius is perpendicular to GK  and thus bisects GK  into two 
segments of length 3 . You’ve divided KGC  into two right triangles; each has a 
hypotenuse of 2 and a leg of 3 , so the other leg (the altitude) is 1 (by the Pythag-
orean Theorem or by recognizing that these are 30 60 90- -  triangles whose sides 
are in the ratio of 1 3 2: :  — see Chapter 8). So KGC  has an altitude of 1 and a 
base of 2 3 . Just use the regular triangle area formula again:

Area  units1
2

1
2

2 3 1 3 2bh

Now just add ’em up:

Area area area area areaGHIJ JKC GHC HJC KGC

3 2 2 3

4 2 3 77 46 2.  units

HOW BIG IS THE FULL MOON?
While I’m on the subject of circles, check this out: Take a penny and hold it out at arm’s 
length. Now ask yourself how big that penny looks compared with the size of a full 
moon — you know, like if you went outside during a full moon and held the penny up at 
arm’s length “next to” the moon. Which do you think would look bigger and by how 
much (is one of them twice as big, three times, or what)? Common answers are that the 
two are the same size or that the moon is two or three times as big as the penny. 
Well — hold on to your hat — the real answer is that the penny is three times as wide as 
the moon! (Give or take a bit, depending on the length of your arm.) Hard to believe, but 
true. Try it some evening.
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Pieces of the Pie: Arcs and Central Angles
In this section, I introduce you to arcs and central angles, and then you see six 
theorems about how arcs, central angles, and chords are all interrelated.

Three definitions for your  
mathematical pleasure
Okay, so maybe pleasure is a bit of a stretch. How about “more fun than sticking a 
hot poker in your eye”? These definitions may not rank up there with your great-
est high school memories, but they are important in geometry. A circle’s central 
angles and the arcs that they cut out are part of many circle proofs, as you can see 
in the following section. They also come up in many area problems, which you see 
in Chapter 15. For a visual, see Figure 14-2.

 » Arc: An arc is simply a curved piece of a circle. Any two points on a circle 
divide the circle into two arcs: a minor arc (the smaller piece) and a major arc 
(the larger) — unless the points are the endpoints of a diameter, in which case 
both arcs are semicircles. Figure 14-2 shows minor arc AB (a 60  arc) and 
major arc ACB  (a 300  arc). Note that to name a minor arc, you use its two 
endpoints; to name a major arc, you use its two endpoints plus any point 
along the arc.

 » Central angle: A central angle is an angle whose vertex is at the center of 
a circle. The two sides of a central angle are radii that hit the circle at the 
opposite ends of an arc — or as mathematicians say, the angle intercepts 
the arc.

The measure of an arc is the same as the degree measure of the central angle 
that intercepts it. The figure shows central angle AQB , which, like AB,  
measures 60 .

FIGURE 14-2:  
A 60  central 

angle cuts out  
a 60  arc. 

© John Wiley & Sons, Inc.
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And here’s one more definition that you need for the next section.

Congruent circles: Congruent circles are circles with congruent radii.

Six scintillating circle theorems
The next six theorems are all just variations on one basic idea about the intercon-
nectedness of arcs, central angles, and chords (all six are illustrated in 
Figure 14-3):

 » Central angles and arcs:

• If two central angles of a circle (or of congruent circles) are congruent, then 
their intercepted arcs are congruent. (Short form: If central angles congru-
ent, then arcs congruent.) In Figure 14-3, if WMX ZMY , then 
WX ZY� � .

• If two arcs of a circle (or of congruent circles) are congruent, then the 
corresponding central angles are congruent. (Short form: If arcs congruent, 
then central angles congruent.) If WX ZY� � , then WMX ZMY .

 » Central angles and chords:

• If two central angles of a circle (or of congruent circles) are congruent, then 
the corresponding chords are congruent. (Short form: If central angles 
congruent, then chords congruent.) In Figure 14-3, if WMX ZMY , 
then WX ZY .

• If two chords of a circle (or of congruent circles) are congruent, then the 
corresponding central angles are congruent. (Short form: If chords 
congruent, then central angles congruent.) If WX ZY , then 

WMX ZMY .

 » Arcs and chords:

• If two arcs of a circle (or of congruent circles) are congruent, then the 
corresponding chords are congruent. (Short form: If arcs congruent, then 
chords congruent.) In Figure 14-3, if WX ZY� � , then WX ZY .

• If two chords of a circle (or of congruent circles) are congruent, then the 
corresponding arcs are congruent. (Short form: If chords congruent, then 
arcs congruent.) If WX ZY , then WX ZY� � .
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Here’s a more condensed way of thinking about the six theorems:

 » If the angles are congruent, both the chords and the arcs are congruent.

 » If the chords are congruent, both the angles and the arcs are congruent.

 » If the arcs are congruent, both the angles and the chords are congruent.

These three ideas condense further to one simple idea: If any pair (of central 
angles, chords, or arcs) is congruent, then the other two pairs are also 
congruent.

Trying your hand at some proofs
Time for a proof. Try to work out your own game plan before reading the 
solution:

Given: Circle 

Prove:

U

DB WE

UO DW

UL EB

UOW ULB

 

 
© John Wiley & Sons, Inc.

FIGURE 14-3:  
Arcs, chords, and 
central angles: All 

for one and one 
for all. 

© John Wiley & Sons, Inc.
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Hint: Arc addition and subtraction work just like segment addition and subtraction.

Behold the formal proof:

© John Wiley & Sons, Inc.

One proof down, one to go:

Given: Circle 

Prove:

V

QR ST

Q T

 

 
© John Wiley & Sons, Inc.

Here’s a quick game plan: First, draw in radii to R and S, creating two triangles 
QVS and TVR. (Actually, six new triangles are created, but only two of them have 
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labels on all their vertices; those are the triangles that you’ll use in this proof. Such 
triangles are far more likely to be useful than triangles with missing labels.) Think 
about how you can prove triangles QVS and TVR congruent. With arc addition, you 

get QS RT  , and from that, you get QVS TVR. You can then use those angles 
and four radii to get the triangles congruent with SAS and then finish with CPCTC.

© John Wiley & Sons, Inc.

Going Off on a Tangent about Tangents
I hope you’re enjoying Geometry For Dummies so far. I remember enjoying geom-
etry in high school. Hey, that reminds me: I had this geometry teacher who had 
this old, run-down car, a real beater. He took it on a trip to the Ozarks, and on the 
way there he had to stop for gas. After filling up, he went into the station to buy 
some beef jerky, and when he was coming back, there was a bear trying to . . . hey, 
where was I? Oh, I guess I sort of went off on a tangent — get it? I really crack 
myself up.

Anyway, in this section, you look at lines that are tangent to circles. Tangents 
show up in a couple of interesting problem types: the common-tangent problem 
and the walk-around problem. As you may have guessed, these problems have 
nothing to do with road trips to the Ozarks.
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Introducing the tangent line
First, a definition: A line is tangent to a circle if it touches it at one and only one 
point.

Radius-tangent perpendicularity: If a line is tangent to a circle, then it is perpen-
dicular to the radius drawn to the point of tangency. Check out the bicycle wheels 
in Figure 14-4.

In this figure, the wheels are, of course, circles, the spokes are radii, and the 
ground is a tangent line. The point where each wheel touches the ground is a point 
of tangency. And the most important thing — what the theorem tells you — is that 
the radius that goes to the point of tangency is perpendicular to the tangent line.

Don’t neglect to check circle problems for tangent lines and the right angles that 
occur at points of tangency. You may have to draw in one or more radii to points 
of tangency to create the right angles. The right angles often become parts of right 
triangles (or sometimes rectangles).

Here’s an example problem: Find the radius of circle C and the length of DE in the 
following figure.

© John Wiley & Sons, Inc.

FIGURE 14-4:  
The ground is 
tangent to the 

wheels. 
© John Wiley & Sons, Inc.
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When you see a circle problem, you should be saying to yourself: radii, radii, radii! So 

draw in radius CF , which, according to the theorem, is perpendicular to AE
� ���

. Set it 
equal to x, which gives CB a length of x as well. You now have right triangle CFA, 
so use the Pythagorean Theorem to find x:

x x

x x x

x

x

2 2 2

2 2

6 2

36 4 4

32 4

8

So the radius is 8. Then you can see that CFE  is an 8 15 17- -  triangle (see  
Chapter  8), so CE is 17. (Of course, you can also get CE with the Pythagorean  
Theorem.) CD is 8 (and it’s the third radius in this problem; does “radii, radii, 
radii” ring a bell?). Therefore, DE is 17 8, or 9. That does it.

The common-tangent problem
The common-tangent problem is named for the single tangent line that’s tangent 
to two circles. Your goal is to find the length of the tangent. These problems are a 
bit involved, but they should cause you little difficulty if you use the straightfor-
ward, three-step solution method that follows.

The following example involves a common external tangent (where the tangent 
lies on the same side of both circles). You might also see a common-tangent prob-
lem that involves a common internal tangent (where the tangent lies between the 
circles). No worries: The solution technique is the same for both.

Given: The radius of circle  is 4

The radius of circle  is

A

Z   14

The distance between the circles is 

Prove: The length 

8

oof the common tangent, BY

© John Wiley & Sons, Inc.
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Here’s how to solve it:

1. Draw the segment connecting the centers of the two circles and draw the 
two radii to the points of tangency (if these segments haven’t already 
been drawn for you).

Draw AZ  and radii AB and ZY . Figure 14-5 shows this step. Note that the 
given distance of 8 between the circles is the distance between the outsides of 
the circles along the segment that connects their centers.

2. From the center of the smaller circle, draw a segment parallel to the common 
tangent till it hits the radius of the larger circle (or the extension of the 
radius of the larger circle in a common-internal-tangent problem).

You end up with a right triangle and a rectangle; one of the rectangle’s sides is 
the common tangent. Figure 14-6 illustrates this step.

FIGURE 14-5:  
Here’s the first 

step, which 
creates two right 

angles. 
© John Wiley & Sons, Inc.

FIGURE 14-6:  
Here’s the second 

step (and part of 
the third). 

© John Wiley & Sons, Inc.
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3. You now have a right triangle and a rectangle and can finish the problem 
with the Pythagorean Theorem and the simple fact that opposite sides of a 
rectangle are congruent.

The triangle’s hypotenuse is made up of the radius of circle A, the segment 
between the circles, and the radius of circle Z. Their lengths add up to 
4 8 14 26. You can see that the width of the rectangle equals the radius 
of circle A, which is 4; because opposite sides of a rectangle are congruent, you 
can then tell that one of the triangle’s legs is the radius of circle Z minus 4, or 
14 4 10. You now know two sides of the triangle, and if you find the third 
side, that’ll give you the length of the common tangent. You get the third side 
with the Pythagorean Theorem:

x

x

x

x

2 2 2

2

2

10 26

100 676

576

24

(Of course, if you recognize that the right triangle is in the 5 12 13: :  family, you 
can multiply 12 by 2 to get 24 instead of using the Pythagorean Theorem.)

Because opposite sides of a rectangle are congruent, BY is also 24, and you’re 
done.

Now look back at Figure 14-6 and note where the right angles are and how the 
right triangle and the rectangle are situated; then make sure you heed the follow-
ing tip and warning.

Note the location of the hypotenuse. In a common-tangent problem, the segment 
connecting the centers of the circles is always the hypotenuse of a right 
 triangle. (Also, the common tangent is always the side of a rectangle and never a 
hypotenuse.)

In a common-tangent problem, the segment connecting the centers of the circles 
is never one of the sides of a right angle. Don’t make this common mistake.

Taking a walk on the wild side with  
a walk-around problem
I think the way the next type of problem works out is really nifty. It’s called a 
walk-around problem; you’ll see why it’s called that in a minute. But first, here’s 
a theorem you need for the problem.
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Dunce Cap Theorem: If two tangent segments are drawn to a circle from the same 
external point, then they’re congruent. I call this the dunce cap theorem because 
that’s what the diagram looks like, but you won’t have much luck if you try to find 
that name in another geometry book. See Figure 14-7.

Given: Diagram as shown

, , , and 
are tangent to cir
WL LR RU UW

ccle 

Find:

D

UW  
© John Wiley & Sons, Inc.

The first thing to notice about a walk-around problem is exactly what the dunce 
cap theorem says: Two tangent segments are congruent if they’re drawn from the 
same point outside of the circle. So in this problem, you’d mark the following pairs 
of segments congruent: WN  and WA, LA and LK , RK and RO , and UO and UN .  
(Are you starting to see why they call this a walk-around problem?)

Okay, here’s what you do. Set WN equal to x. Then, by the dunce cap theorem, WA 
is x as well. Next, because WL is 12 and WA is x, AL is 12 x. A to L to K is another 
dunce cap, so LK is also 12 x. LR is equal to 18, so KR is LR LK  or 18 12 x ; 
this simplifies to 6 x . Continue walking around like this till you get back home 
to NU , as I show you in Figure 14-8.

FIGURE 14-7:  
The circle is 

wearing a dunce 
cap, which has 

congruent sides. 
© John Wiley & Sons, Inc.
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Finally, UW equals WN NU , or x x16 , which equals 16. That’s it.

One of the things I find interesting about walk-around problems is that when you 
have an even number of sides in the figure (as in this example), you get a solution 
without ever solving for x. In the example problem, x can take on any value from 
0 to 12, inclusive. Varying x changes the size of the circle and the shape of the 
quadrilateral, but the lengths of the four sides (including the solution) remain 
unchanged. When, on the other hand, a walk-around problem involves an odd 
number of sides, there’s a single solution for x and the diagram has a fixed shape. 
Pretty cool, eh?

FIGURE 14-8:  
Walking around 
with the dunce 

cap theorem. 
© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Analyzing arc length and sector area

Theorizing about the angle-arc 
theorems

Practicing products with the power 
theorems

Circle Formulas 
and Theorems

Students are always asking, “When am I ever going to use this?” Well,  
I suppose this book contains many things you won’t be using again very 
soon, but one thing I know for sure is that you’ll use things with a circular 

shape thousands of times in your life. Every time you ride in a car, you encounter 
the four tires, the circular steering wheel, the circular knobs on the radio, the 
circular opening at the tailpipe, and so on; same goes for riding a bicycle — 
wheels, gears, the opening of the little air-filler thingamajig on the tires, and so 
on. And consider all the inventions and products that make use of this omnipres-
ent shape: Ferris wheels, gyroscopes, iPod click wheels, lenses, manholes (and 
manhole covers), pipes, waterwheels, merry-go-rounds, and many, many more.

In this chapter, you discover fascinating things about the circle. You investigate 
many formulas and theorems about circles and the connections among circles, 
angles, arcs, and various segments associated with circles (chords, tangents, and 
secants). For the most part, these formulas involve the way these geometric 
objects cut up or divide each other: circles cutting up secants, angles cutting arcs 
out of circles, chords cutting up chords, and so on.

Chapter 15
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Chewing on the Pizza Slice Formulas
In this section, you begin with two basic formulas: the formulas for the area and 
the circumference of a circle. Then you use these formulas to compute lengths, 
perimeters, and areas of various parts of a circle: arcs, sectors, and segments (yes, 
segment is the name for a particular chunk of a circle, and it’s completely different 
from a line segment — go figure). You could use these formulas when you’re fig-
uring out what size pizza to order, though I think it’d be more useful to simply 
calculate how hungry you are. So here you go.

Circumference and area of a circle: Along with the Pythagorean Theorem and a 
few other formulas, the two following circle formulas are among the most widely 
recognized formulas in geometry. In these formulas, r is a circle’s radius and d is 
its diameter:

 » Circumference  or 2 r d

 » Area Circle r 2

Read on for info on finding arc length and the area of sectors and segments. If you 
understand the simple reasoning behind the formulas for these things, you should 
be able to solve arc, sector, and segment problems even if you forget the 
formulas.

Determining arc length
Before getting to the arc length formula, I want to mention a potential source 
of confusion about arcs and how you measure them. In Chapter 14, the measure 
of an arc is defined as the degree measure of the central angle that intercepts the 
arc. To say that the measure of an arc is 60  simply means that the associated 
central angle is a 60  angle. But now, in this section, I go over how you determine 
the length of an arc. An arc’s length means the same commonsense thing 
length always means — you know, like the length of a piece of string (with an 
arc, of course, it’d be a curved piece of string). In a nutshell, the measure of an arc 
is the degree size of its central angle; the length of an arc is the regular length 
along the arc.

A circle is 360  all the way around; therefore, if you divide an arc’s degree measure 
by 360 , you find the fraction of the circle’s circumference that the arc makes up. 
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Then, if you multiply the length all the way around the circle (the circle’s circum-
ference) by that fraction, you get the length along the arc. So finally, here’s the 
formula you’ve been waiting for.

Arc length: The length of an arc (part of the circumference, like AB in Figure 15-1) 
is equal to the circumference of the circle (2 r) times the fraction of the circle 
represented by the arc’s measure (note that the degree measure of an arc is writ-
ten like mAB):

Length
AB

mAB r




360
2

Check out the calculations for AB. Its degree measure is 45  and the radius of the 
circle is 12, so here’s the math for its length:

Length

 u

AB
mAB r





360
2

45
360

2 12

1
8

24

3 9 42. nnits

As you can see, because 45  is 1
8

 of 360 , the length of arc AB is 1
8

 of the circle’s 

circumference. Pretty simple, eh?

FIGURE 15-1:  

Arc AB is 1
8

 of the 

circle’s 
 circumference. 

© John Wiley & Sons, Inc.
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A CIRCLE IS SORT OF AN -GON
A regular octagon, like a stop sign, has eight congruent sides and eight congruent 
angles. Now imagine what regular 12-gons, 20-gons, and 50-gons would look like. The 
more sides a polygon has, the closer it gets to a circle. Well, if you continue this to infin-
ity, you sort of end up with an -gon, which is exactly the same as a circle. (I say sort of 
because whenever you talk about infinity, you’re on somewhat shaky ground.) The fact 
that you can think of a circle as an -gon makes the following remarkable idea work:

You can use the formula for the area of a regular polygon to compute the area of a 
circle!

Here’s the regular-polygon formula from Chapter 12: Area Regular Polygon
1
2

pa (where p 

is the polygon’s perimeter and a is its apothem, the distance from the polygon’s center 

to the midpoint of a side).

To explain how this formula works, I use an octagon as an example. Following is a regu-
lar octagon with its apothem drawn in and, to the right of the octogon, what it would 
look like after being cut along its radii and unrolled.

© John Wiley & Sons, Inc.

The octagon’s perimeter has become the eight bases of the eight little triangles. You can 
see that the apothem is the same as the height of the triangles.

The polygon area formula is based on the triangle area formula, Area 1
2

bh. All the 

polygon formula does is use the perimeter (the sum of all the triangle bases) instead of 
a single triangle base. In doing so, it just totals up the areas of all the little triangles in 
one fell swoop to give you the area of the polygon.

Now look at a circle cut into 16 thin sectors (or pizza slices) before and after being 
unrolled.
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Finding sector and segment area
Yes, you read that right. You can find the area of a segment. Not, of course, the 
area of a line segment (which has no area), but the area of a segment of a circle — 
a completely different sort of thing. A circle segment is a chunk of a circle sur-
rounded by a chord and an arc. The other circle region you look at here is a 
sector — a piece of a circle surrounded by two radii and an arc. In this section,  
I show you how to find the area of each of these regions.

So here are the definitions of the two regions (Figure 15-2 shows you both):

 » Sector: A region bounded by two radii and an arc of a circle (plain English 
definition: the shape of a piece of pizza)

 » Segment of a circle: A region bounded by a chord and an arc of a circle

© John Wiley & Sons, Inc.

As you can see, a circle’s “perimeter” is its circumference (2πr), and its “apothem” is its 
radius. Unlike the flat base of the unrolled octagon, the base of the unrolled circle is 
wavy because it’s made up of little arcs of the circle. But if you were to cut up the circle 
into more and more sectors, this base would get flatter and flatter until — with an “infi-
nite number” of “infinitely thin” sectors — it became perfectly flat and the sectors 
became infinitely thin triangles. Then the polygon formula would work for the same 
reason that it works for polygons:

Area Circle
1
2
1
2

2

2

pa

r r

r

Voilà! The old, familiar r 2.
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Just as an arc is part of a circle’s circumference, a sector is part of a circle’s area; 
therefore, computing the area of a sector works like the arc-length formula in the 
preceding section.

Area of a sector: The area of a sector (such as sector PQR in Figure 15-2) is equal 
to the area of the circle ( r 2) times the fraction of the circle represented by the 
sector:

Area Sector PQR
mPR r


360
2

Use this formula to find the area of sector ACB from Figure 15-1:

Area

 units

Sector ACB
mAB r


360

1
8

12

18 56 55

2

2

. 22

Because 45  is 1
8

 of 360 , the area of sector ACB is 1
8

 of the area of the circle (just 

like the length of AB is 1
8

 of the circle’s circumference).

Area of a segment: To compute the area of a segment like the one in Figure 15-2, 
just subtract the area of the triangle from the area of the sector (by the way, there’s 
no technical way to name segments, but let’s call this one circle segment XZ ):

Area area areaCircle Segment Sector XZ XYZ XYZ

You know how to compute the area of a sector. To get the triangle’s area, you draw 
an altitude that goes from the circle’s center to the chord that makes up the tri-
angle’s base. This altitude then becomes a leg of a right triangle whose hypote-
nuse is a radius of the circle. You finish with right-triangle ideas such as the 
Pythagorean Theorem. I show you how to do all this in detail in the next section.

FIGURE 15-2:  
A pizza-slice 
sector and a 

segment of a 
circle. 

© John Wiley & Sons, Inc.
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Pulling it all together in a problem
The following problem illustrates finding arc length, sector area, and segment area:

Given: Circle  with a radius of 6

Find:  Length of arc 

D

IK1. 

22

3

.

.

 Area of sector 

 Area of circle segment 

IDK

IK     
© John Wiley & Sons, Inc.

Here’s the solution to this three-part problem:

1. Find the length of arc IK.

You really don’t need a formula for finding arc length if you understand the 
concepts: The measure of the arc is 120 , which is a third of 360 , so the length 
of IK is a third of the circumference of circle D. That’s all there is to it. Here’s 
how all this looks when you plug it into the formula:

Length

 uni

IK
mIK r





360
2

120
360

12

1
3

12

4 12 6. tts

2. Find the area of sector IDK.

A sector is a portion of the circle’s area. Because 120  takes up a third of the 
degrees in a circle, sector IDK occupies a third of the circle’s area. Here’s the 
formal solution:

Area Sector IDK
mIK r


360

120
360

36

1
3

36

12 37

2

..7 2 units
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3. Find the area of circle segment IK.

To find the segment area, you need the area of IDK  so you can subtract it 
from the area of sector IDK. Draw an altitude straight down from D to IK . That 
creates two 30 60 90- -  triangles. The sides of a 30 60 90- -  triangle are in the 
ratio of x x x: :3 2  (see Chapter 8), where x is the short leg, x 3  the long leg, 
and 2x the hypotenuse. In this problem, the hypotenuse is 6, so the altitude 
(the short leg) is half of that, or 3, and the base (the long leg) is 3 3 . IK  is twice 
as long as the base of the 30 60 90- -  triangle, so it’s twice 3 3 , or 6 3 . You’re 
all set to finish with the segment area formula:

Area area area

(You got t

Segment Sector IDK IDK IDK

bh12 1
2

hhe 12  in part 2)

 units

12 1
2

6 3 3

12 9 3

22 1 2.

Digesting the Angle-Arc Theorems  
and Formulas

In this section, you investigate angles that intersect a circle. The vertices of these 
angles can lie inside the circle, on the circle, or outside the circle. The formulas in 
this section tell you how each of these angles is related to the arcs they intercept. 
As with much of the other material in this book, Archimedes and other mathema-
ticians from over two millennia ago knew these angle-arc relationships.

Angles on a circle
Of the three places an angle’s vertex can be in relation to a circle, the angles whose 
vertices lie on a circle are the ones that come up in the most problems and are 
therefore the most important. These angles come in two flavors:

 » Inscribed angle: An inscribed angle, like BCD in Figure 15-3a, is an angle 
whose vertex lies on a circle and whose sides are two chords of the circle.
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 » Tangent-chord angle: A tangent-chord angle, like JKL in Figure 15-3b, is an 
angle whose vertex lies on a circle and whose sides are a tangent and a chord 
of the circle (for more on tangents and chords, see Chapter 14).

Measure of an angle on a circle: The measure of an inscribed angle or a tangent-
chord angle is one-half the measure of its intercepted arc.

For example, in Figure 15-3, BCD mBD1
2

  and JKL mJK1
2

 .

Make sure you remember the simple idea that an angle on a circle is half the mea-
sure of the arc it intercepts (or, if you look at it the other way around, the arc 
measure is double the angle). If you forget which is half of which, try this: Draw a 
quick sketch of a circle with a 90  arc (a quarter of the circle) and an inscribed angle 
that intercepts the 90  arc. You’ll see right away that the angle is less than 90 , 
which will show you that the angle is the thing that’s half of the arc, not vice versa.

Congruent angles on a circle: The following theorems tell you about situations in 
which you get two congruent angles on a circle:

 » If two inscribed or tangent-chord angles intercept the same arc, then they’re 
congruent (see Figure 15-4a).

 » If two inscribed or tangent-chord angles intercept congruent arcs, then they’re 
congruent (see Figure 15-4b).

FIGURE 15-3:  
Angles with 

vertices on a 
circle. 

© John Wiley & Sons, Inc.
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Time to see these ideas in action — take a look at the following problem:

Given: Diagram as shown

Find: Angles 1, 2, 3, and 4 a

QPS 75

nnd the
measures of arcs , , and SP PQ QR  

 
© John Wiley & Sons, Inc.

Here’s how you do this one. Just keep using the inscribed angle formula over and 
over. Remember — the angle is half the arc; the arc is twice the angle.

SP  is twice the 60  angle, so it’s 120 . Angle 2 is half of that, so it’s 60  (or by the 
first congruent-angle theorem in this section, 2 must equal PRS because they 
both intercept the same arc).

RS  is 40 , so RPS is half of that, or 20 . Subtracting that from QPS  (which the 
given says is 75 ) gives you a measure of 55  for 1. QR  is twice that (110 ); and 

because 3 intercepts QR , it’s half of that, or 55 . (Again, you could’ve just figured 

out that 3 has to equal 1 because they both intercept QR .)

FIGURE 15-4:  
Congruent 

inscribed and 
tangent-chord 

angles. 
© John Wiley & Sons, Inc.
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Now figure out the measure of PQ . Four arcs — QR , RS , SP , and PQ  — make up 
the entire circle, which is 360 . You have the measures of the first three: 110 , 40 ,  
and 120  respectively. That adds up to 270 . Thus, PQ  has to equal 360 270 , or 
90 . Finally, 4 is half of that, or 45 . (You could also solve for 4 by instead using 
the fact that the angles in PRS  must add up to 180 . Just add up the measures of 

R , RPS , and 3, and subtract the total from 180 .)

Note: This triangle idea also gives you a good way to check your results (assuming 
you calculated the measure of 4 the first way). Angle R is 60 , RPS is 20 , 3 is 
55 , and 4 is 45 . That does add up to 180 , so it checks, which brings me to the 
 following tip.

Whenever possible, check your answers with a method that’s different from your 
original solution method. This is a much more effective check of your results than 
simply going through your work a second time looking for mistakes.

Angles inside a circle
In this section, I discuss angles whose vertices are inside but not touching a circle.

Measure of an angle inside a circle: The measure of an angle whose vertex is inside 
a circle (a chord-chord angle) is one-half the sum of the measures of the arcs inter-
cepted by the angle and its vertical angle. For example, check out Figure 15-5, which 
shows you chord-chord angle SVT. You find the measure of the angle like this:

SVT mST mQR1
2

 

FIGURE 15-5:  
Chord-chord 

angles are inside 
a circle. 

© John Wiley & Sons, Inc.
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Here’s a problem to show how this formula plays out:

Given:

Find:
MJ JK KL LM   : : : : : :1 3 4 2

1     
© John Wiley & Sons, Inc.

To use the formula to find 1, you need the measures of arcs MJ and KL. You know 
the ratio of arcs MJ, JK, KL, and LM is 1 3 4 2: : : , so you can set their measures 
equal to 1x, 3x, 4x, and 2x. The four arcs make up an entire circle, so they must add 
up to 360 . Thus,

1 3 4 2 360

10 360

36

x x x x

x

x

Plug 36 in for x to find the measures of MJ  and KL :

mMJ x

mKL x





1 36

4 4 36 144

Now use the formula:

1 1
2
1
2

144 36

1
2

180

90

mKL mMJ 

That does it. Take five.

Angles outside a circle
The preceding sections look at angles whose vertices are on a circle and whose 
vertices are inside a circle. There’s only one other place an angle’s vertex can 
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be — outside a circle, of course. Three varieties of angles fall outside a circle, and 
all are made up of tangents and secants.

You know what a tangent is (see Chapter 14), and here’s the definition of secant: 
Technically, a secant is a line that intersects a circle at two points. But the secants 
you use in this section and the section later in this chapter called “Powering Up 
with the Power Theorems” are segments that cut through a circle and have one 
endpoint outside the circle and one endpoint on the circle.

So here are the three types of angles that are outside a circle:

 » Secant-secant angle: A secant-secant angle, like BDF  in Figure 15-6a, is an 
angle whose vertex lies outside a circle and whose sides are two secants of 
the circle.

 » Secant-tangent angle: A secant-tangent angle, like GJK  in Figure 15-6b, is 
an angle whose vertex lies outside a circle and whose sides are a secant and a 
tangent of the circle.

 » Tangent-tangent angle: A tangent-tangent angle, like LMN  in Figure 15-6c, 
is an angle whose vertex lies outside a circle and whose sides are two 
tangents of the circle.

FIGURE 15-6:  
Three kinds of 

angles outside a 
circle. 

© John Wiley & Sons, Inc.
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Measure of an angle outside a circle: The measure of a secant-secant angle, a 
secant-tangent angle, or a tangent-tangent angle is one-half the difference of the 
measures of the intercepted arcs. For example, in Figure 15-6,

BDF mBF mCE

GJK mGK mHK

LMN mLPN mLN

1
2
1
2
1
2

� �

� �

� �

Note that you subtract the smaller arc from the larger. (If you get a negative 
answer, you know you subtracted in the wrong order.)

Here’s a problem that illustrates the angle-outside-a-circle formula:

Given: Diagram as shown

Find:  and mWT mTH� �     
© John Wiley & Sons, Inc.

You know that arcs HW , WT , and TH must add up to 360 , so because HW  is 100 ,  
WT  and TH add up to 260 . Thus, you can set mWT  equal to x and mTH  equal to 
260 x . Plug these expressions into the formula, and you’re home free:

Measure of  outside circle arc arc1
2

50 1
2

50

mTH mWT� �

11
2

260

50 1
2

260 2

50 130

80

80

x x

x

x

x

x

So mWT  is 80 , and mTH  is 180 .
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Keeping your angle-arc formulas straight
I’ve got two great tips to help you remember when to use each of the three angle-
arc formulas.

In the previous three sections, you see six types of angles made up of chords, 
secants, and tangents but only three angle-arc formulas. As you can tell from the 
titles of the three sections, to determine which of the three angle-arc formulas you 
need to use, all you need to pay attention to is where the angle’s vertex is: inside, 
on, or outside the circle. You don’t have to worry about whether the two sides of 
the angle are chords, tangents, secants, or some combination of these things.

The second tip can help you remember which formula goes with which category of 
angle. First, check out Figure 15-7.

You can see that the small angle, S  (maybe about 35 ) is outside the circle; the 
medium angle, M  (about 70 ) is on the circle; and the large angle, L (roughly 
110 ) is inside the circle. Here’s one way to understand why the sizes of the angles 
go in this order. Say that the sides of L are elastic. Picture grabbing L at its 
vertex and pulling it to the left (as its ends remain attached to A and B). The far-
ther you pull L to the left, the smaller the angle gets.

Subtracting makes things smaller, and adding makes things larger, right? So 
here’s how to remember which angle-arc formula to use (see Figure 15-7):

 » To get the small angle, you subtract:

S 1
2

arc arc

 » To get the medium angle, you do nothing:

M 1
2

arc

FIGURE 15-7:  
The further the 
angle gets from 

the center of the 
circle, the smaller 

it gets. 

© John Wiley & Sons, Inc.



270      PART 5  Working with Not-So-Vicious Circles

 » To get the large angle, you add:

L 1
2

arc arc

(Note: Whenever you use any of the angle-arc formulas, make sure you always use 
arcs that are in the interior of the angles.)

Powering Up with the Power Theorems
Like the preceding sections, this section takes a look at what happens when angles 
and circles intersect. But this time, instead of analyzing the size of angles and arcs, 
you analyze the lengths of the segments that make up the angles. The three power 
theorems that follow allow you to solve all sorts of interesting circle problems.

Striking a chord with the chord-chord 
 power theorem
The chord-chord power theorem was brilliantly named for the fact that the theorem 
uses a chord and — can you guess? — another chord!

Chord-Chord Power Theorem: If two chords of a circle intersect, then the product 
of the lengths of the two parts of one chord is equal to the product of the lengths 
of the two parts of the other chord. (Is that a mouthful or what?)

For example, in Figure 15-8,

5 4 10 2

FIGURE 15-8:  
The chord-chord 
power theorem: 

(part) (part) = 
(part) (part). 

© John Wiley & Sons, Inc.
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Try out your power-theorem skills on this problem:

Given: Circle  has a radius of 

 is a kite

Find: T

A

KITE

IZ

6 5

4

.

hhe area of KITE     
© John Wiley & Sons, Inc.

To get the area of a kite, you need to know the lengths of its diagonals. The kite’s 
diagonals are two chords that cross each other, so you should ask yourself whether 
you can apply the chord-chord power theorem.

To get diagonal IE, note that IE is also the circle’s diameter. Circle A has a radius 
of 6.5, so its diameter is twice as long, or 13, and thus that’s the length of diagonal 
IE. Then you see that ZE must be 13 4, or 9. Now you have two of the lengths, 
IZ 4 and ZE 9, for the segments you use in the theorem:

KZ ZT IZ ZE

Because KITE is a kite, diagonal IE bisects diagonal KT  (see Chapter 10 for kite 
properties). Thus, KZ ZT , so you can set them both equal to x. Plug everything 
into the equation:

x x

x

x

4 9

36

6 6

2

 or 

You can obviously reject –6 as a length, so x is 6. KZ and ZT are thus both 6, and 
diagonal KT  is therefore 12. You’ve already figured out that the length of the other 
diagonal is 13, so now you finish with the kite area formula:

Area

 units

KITE d d1
2
1
2

12 13

78

1 2

2
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By the way, you can also do this problem with the altitude-on-hypotenuse theo-
rem, which I introduce in Chapter  13. Angles IKE and ITE intercept semicircles  
(180 ), so they’re both half of 180 , or right angles. The altitude-on-hypotenuse 
theorem then gives you KZ IZ ZE

2
 and TZ IZ ZE

2
 for the two right 

triangles on the left and the right sides of the kite. After that, the math works out 
just like it does using the chord-chord power theorem.

Touching on the tangent-secant  
power theorem
In this section, I go through the tangent-secant power theorem — another abso-
lutely awe-inspiring example of creative nomenclature.

Tangent-Secant Power Theorem: If a tangent and a secant are drawn from an 
external point to a circle, then the square of the length of the tangent is equal to 
the product of the length of the secant’s external part and the length of the entire 
secant. (Another mouthful.)

For example, in Figure 15-9,

8 4 4 122

Seeking out the secant-secant  
power theorem
Last but not least, I give you the secant-secant power theorem. Are you sitting 
down? This theorem involves two secants! (If you’re trying to come up with a 
creative name for your child like Dweezil or Moon Unit, talk to Frank Zappa, not 
the guy who named the power theorems.)

FIGURE 15-9:  
The tangent-

secant power 
theorem: 

(tangent)2 = 
(outside) (whole). 

© John Wiley & Sons, Inc.
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Secant-Secant Power Theorem: If two secants are drawn from an external point to 
a circle, then the product of the length of one secant’s external part and the length 
of that entire secant is equal to the product of the length of the other secant’s 
external part and the length of that entire secant. (The biggest mouthful of all!)

DROPPING BELOW THE EDGE  
OF THE EARTH
Here’s a nifty application of the tangent-secant power theorem. Check out this figure of 
an adult of average height (say 5 7  or 5 8 ) standing at the ocean’s shore.

© John Wiley & Sons, Inc.

The eyes of someone of average height are about 5.3 feet above the ground, which is 

very close to 1
1 000,

 of a mile. The Earth’s diameter is about 8,000 miles. And x in the 

figure represents the distance to the horizon. You can plug everything into the tangent-
secant power theorem and solve for x:

x

x

x

x

2

2

2

0 001 8 000 0 001

0 001 8 000

8

8 2 8

. , .

. ,

.  miles

This short distance surprises most people. If you’re standing on the shore, something 
floating on the water begins to drop below the horizon at a mere 2.8 miles from shore! 
(For yet another way of estimating distance to the horizon, see Chapter 22.)
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For instance, in Figure 15-10,

4 4 2 3 3 5

The following problem uses the last two power theorems:

Given: Diagram as shown

 is tangent 

to circle  at 

Find:

BA

H A

x   and y  
© John Wiley & Sons, Inc.

The figure includes a tangent and some secants, so look to your tangent-secant 
and secant-secant power theorems. First use the tangent-secant power theorem 
with tangent AB and secant BD to solve for x:

x x

x x x

x

x

x

3 6 6

6 9 36 6

27

27

3 3

2

2

2

FIGURE 15-10:  
The secant-secant 

power theorem: 
(outside) (whole) = 

(outside) (whole). 
© John Wiley & Sons, Inc.
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You can reject the negative answer, so x is 3 3 .

Now use the secant-secant power theorem with secants EC  and EG  to solve for y:

2 3 2 3 3 3 7

2 3 5 3 7

30 7

7 30 0

10 3

2

2

2

y y

y y

y y

y y

y y 0

y

y

y

y

10 0

10

3 0

3

or

A segment can’t have a negative length, so y 3. That does it.

Condensing the power theorems  
into a single idea
All three of the power theorems involve an equation with a product of two lengths 
(or one length squared) that equals another product of lengths. And each length is 
a distance from the vertex of an angle to the edge of the circle. Thus, all three 
theorems use the same scheme:

vertex to circle vertex to circle vertex to circle veertex to circle

This unifying scheme can help you remember all three of the theorems I discuss 
in the preceding sections. And it’ll help you avoid the common mistake of multi-
plying the external part of a secant by its internal part (instead of correctly mul-
tiplying the external part by the entire secant) when you’re using the tangent-secant 
or secant-secant power theorem.
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Learn how to work on 3-D proofs.

Study the volume and surface area of pyramids, 
cylinders, cones, spheres, prisms, and other solids of 
varying shapes.
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IN THIS CHAPTER

One-plane proofs: Lines that are 
perpendicular to planes

Multi-plane proofs: Parallel lines, 
parallel planes, and much, much more

Planes that cut through other planes

3-D Space: Proofs 
in a Higher Plane 
of Existence

All the geometry in the chapters before this one involves two-dimensional 
shapes. In this chapter, you take your first look at three-dimensional  
  diagrams and proofs, and you get a chance to check out lines and planes in 3-D 

space and investigate how they interact. But unlike the 3-D boxes, spheres, and cyl-
inders you see in everyday life (and in Chapter  17), the 3-D things in this chapter 
 simply boil down to the flat 2-D stuff from earlier chapters “standing up” in 3-D space.

Lines Perpendicular to Planes
A plane is just a flat thing, like a piece of paper, except that it’s infinitely thin and 
goes on forever in all directions (Chapter 2 tells you more about planes). In this 
section, you find out what it means for a line to be perpendicular to a plane and 
how to use this perpendicularity in two-column proofs.

Line-Plane perpendicularity definition: Saying that a line is perpendicular to a 
plane means that the line is perpendicular to every line in the plane that passes 
through its foot. (A foot is the point where a line intersects a plane.)

Chapter 16
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Line-Plane perpendicularity theorem: If a line is perpendicular to two different 
lines that lie in a plane and pass through its foot, then it’s perpendicular to the plane.

In two-column proofs, you use the preceding definition and theorem for different 
reasons:

 » Use the definition when you already know that a line is perpendicular to a 
plane and you want to show that this line is perpendicular to a line that lies in 
the plane (in short, if  to plane, then  to line).

 » Use the theorem when you already know that a line is perpendicular to two 
lines in a plane and you want to show that the line is perpendicular to the 
plane itself (in short, if  to two lines, then  to plane). Note that this is roughly 
the reverse of the process in the first bullet.

Make sure you understand that a line must be perpendicular to two different lines in 
a plane before you can conclude that it’s perpendicular to the plane. (The two lines in 
the plane will always intersect at the foot of the line that’s perpendicular to the 
plane.) Perpendicularity to one line in a plane isn’t enough. Here’s why: Imagine you 
have a big capital letter L made out of, say, plastic, and you’re holding it on a table so 
it’s pointing straight up. When it’s pointing up, the vertical piece of the L is perpen-
dicular to the tabletop. Now start to tip the L a bit (keeping its base on the table), so 
the top of the L is now on a slant. The top piece of the L is obviously still perpendicular 
to the bottom piece (which is a line that’s on the plane of the table), but the top piece 
of the L is no longer perpendicular to the table. Thus, a line sticking out of a plane can 
make a right angle with a line in the plane and yet not be perpendicular to the plane.

Ready for a couple of problems? Here’s the first one:

Given:

Prove:

BD m

EBC EDC

AB AD  
© John Wiley & Sons, Inc.
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© John Wiley & Sons, Inc.

Note: There are two other equally good ways to prove BEC DEC , which you 
see in statement 7. Both use the reflexive property for EC , and then one method 
finishes, like here, with AAS; the other finishes with HLR. All three methods take 
the same number of steps. I chose the method shown to reinforce the importance 
of the if-angles-then-sides theorem (reason 6).

The next example proof uses both the definition of and the theorem about line-
plane perpendicularity (for help deciding which to use where, see my explanation 
in the bulleted list in this section).
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Given: Circle 

 is a right angle

 is a right angle
Pr

C

JCZ

KCZ
oove: ZLM ZML      p

K

J M

C
L

Z

© John Wiley & Sons, Inc.

Here’s the formal proof:

© John Wiley & Sons, Inc.
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Parallel, Perpendicular, and  
Intersecting Lines and Planes

Fasten your seatbelt! In the preceding section, the proofs involve just a single plane, 
but in this section, you get on board with proofs and figures that really take off 
because they involve multiple planes at different altitudes. Ready for your flight?

The four ways to determine a plane
Before you get into multiple-plane proofs, you first have to know the several ways of 
determining a plane. Determining a plane is the fancy, mathematical way of saying 
“showing you where a plane is.”

Here are the four ways to determine a plane:

 » Three non-collinear points determine a plane. This statement means that 
if you have three points not on one line, then only one specific plane can go 
through those points. The plane is determined by the three points because 
the points show you exactly where the plane is.

To see how this works, hold your thumb, forefinger, and middle finger so that 
your three fingertips make a triangle. Then take something flat like a hard-
cover book and place it so that it touches your three fingertips. There’s only 
one way you can tilt the book so that it touches all three fingers. Your three 
non-collinear fingertips determine the plane of the book.

 » A line and a point not on the line determine a plane. Hold a pencil in  
your left hand so that it’s pointing away from you, and hold your right 
forefinger (pointing upward) off to the side of the pencil. There’s only one 
place something flat can be placed so that it lies along the pencil and touches 
your fingertip.

 » Two intersecting lines determine a plane. If you hold two pencils so that 
they cross each other, there’s only one place a flat plane can be placed so that 
it rests on both pencils.

 » Two parallel lines determine a plane. Hold two pencils so that they’re 
parallel. There’s only one position in which a plane can rest on both pencils.

Now onto the multiple-plane principles and problems.
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Line and plane interactions
Take a look at the following properties about perpendicularity and parallelism of 
lines and planes. You use some of these properties in 3-D proofs that involve 2-D 
concepts from previous chapters, such as proving that you have a particular quad-
rilateral (see Chapter 11) or proving that two triangles are similar (see Chapter 13).

 » Three parallel planes: If two planes are parallel to the same plane, then 
they’re parallel to each other.

 » Two parallel lines and a plane:

• If two lines are perpendicular to the same plane, then they’re parallel to 
each other.

© John Wiley & Sons, Inc.

• If a plane is perpendicular to one of two parallel lines, then it’s 
 perpendicular to the other.

© John Wiley & Sons, Inc.

 » Two parallel planes and a line:

• If two planes are perpendicular to the same line, then they’re parallel 
to each other.

© John Wiley & Sons, Inc.
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• If a line is perpendicular to one of two parallel planes, then it’s perpendicu-
lar to the other.

© John Wiley & Sons, Inc.

And here’s a theorem you need for the example problem that follows.

A plane that intersects two parallel planes: If a plane intersects two parallel 
planes, then the lines of intersection are parallel. Note: Before you use this theo-
rem in a proof, you usually have to use one of the four ways of determining a plane 
(see the preceding section) to show that the plane that cuts the parallel planes is, 
in fact, a plane. Steps 6 and 7 in the following proof show you how this works.

© John Wiley & Sons, Inc.

Here’s the final proof:

Given:

Prove:  is a rectangle

AB DC

AB p

DC q

ABCD



 
© John Wiley & Sons, Inc.
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© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Flat-top solids: The prism and the 
cylinder

Pointy-top solids: The pyramid and 
the cone

Topless solids: Spheres

Getting a Grip on 
Solid Geometry

Unlike Chapter 16, which is all about 2-D (and even 1-D) things interacting 
in three dimensions, this chapter covers 3-D figures you can really sink 
your teeth into: solids. You study cones, spheres, prisms, and other solids 

of varying shapes, focusing on their two most fundamental characteristics, namely 
volume and surface area. To give you an everyday example, the volume of an aquar-
ium (which is technically a prism) is the amount of water it holds, and its surface 
area is the total area of its glass sides plus its base and top.

Flat-Top Figures: They’re on the Level
Flat-top figures (that’s what I call them, anyway) are solids with two congruent, 
parallel bases (the top and bottom). A prism — your standard cereal box is a simple 
example — has polygon-shaped bases, and a cylinder — like your standard soup 
can — has round bases. But despite the fact that prisms and  cylinders have 
 different-shaped bases, their volume and surface area formulas are very similar 
(and are conceptually identical) because they share the flat-top structure.

Chapter 17
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Here are the technical definitions of prism and cylinder (see Figure 17-1):

 » Prism: A prism is a solid figure with two congruent, parallel, polygonal bases. 
Its corners are called vertices, the segments that connect the vertices are called 
edges, and the flat sides are called faces.

A right prism is a prism whose faces are perpendicular to the prism’s bases. All 
prisms in this book, and most prisms you find in other geometry books, are 
right prisms. And when I say prism, I mean a right prism.

 » Cylinder: A cylinder is a solid figure with two congruent, parallel bases 
that have rounded sides (in other words, the bases are not straight-sided 
polygons); these bases are connected by a rounded surface.

A right circular cylinder is a cylinder with circular bases that are directly above 
and below each other. (And the circular bases are at a right angle with the 
curving sides.) All cylinders in this book, and almost all cylinders you find in 
other geometry books, are right circular cylinders. When I say cylinder, I mean 
a right circular cylinder.

Now that you know what these things are, here are their volume and surface area 
formulas:

Volume of flat-top figures: The volume of a prism or cylinder is given by the 
 following formula:

Vol area heightflat-top base

FIGURE 17-1:  
A prism and a 

cylinder with their 
bases and lateral 

rectangles. 
© John Wiley & Sons, Inc.
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THE SHORTEST DISTANCE BETWEEN 
TWO POINTS IS . . . A CROOKED LINE?
Check out the box in the following figure. It’s 2  tall, 5  wide, and 4  deep. If an ant wants 
to walk from A to Z along the outside of the box, what’s the shortest possible route, and 
how long is it?

© John Wiley &  Sons, Inc.

This is a great think-outside-the-box problem. (Get it? The ant must walk on the outside 
of the box. Har-de-har-har.) The key insight you need to solve this problem is that the 
shortest distance between two points is a straight line. Using that principle, however, 
requires that you flatten the box so that the path from A to Z is a straight line.

The ant could take three different “straight-line” paths. (Note: Ants are very small, and 
they can crawl under boxes.) The next figure shows the box with these three routes and 
the three different ways you could flatten or unfold the box to create straight paths.

© John Wiley & Sons, Inc.

(continued)
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An ordinary box is a special case of a prism, so you can use the flat-top volume 
formula for a box, but you probably already know the easier way to compute a 
box’s volume: Vol length width heightBox . (Because the length times the width 
gives you the area of the base, these two methods really amount to the same 
thing.) To get the volume of a cube, the simplest type of box, you just take the 
length of one of its edges and raise it to the third power (VolCube s3, where s is 
the length of an edge of the cube).

Surface area of flat-top figures: To find the surface area of a prism or cylinder, 
use the following formula:

SA area lateral areaFlat-top base rectangle(s)2

Because prisms and cylinders have two congruent bases, you simply find the area 
of one base and double that value; then you add the figure’s lateral area. The 
 lateral area of a prism or cylinder is the area of the sides of the figure — namely, 
the area of everything but the figure’s bases (see Figure 17-1). Here’s how the two 
figures compare:

 » The lateral area of a prism is made up of rectangles. The bases of a prism 
can be any shape, but the lateral area is always made up of rectangles. So to 
get the lateral area, all you need to do is find the area of each rectangle (using 
the standard rectangle area formula) and then add up these areas.

Note that the three bolded edges of the box correspond to the three bolded segments 
of the three “unfolded” rectangles.

You use the Pythagorean Theorem to compute the lengths of the three routes. For route 1, 

you get 9 2 852 2 ; for route 2, 5 6 612 2 ; and for route 3, 7 4 652 2 . 
So the shortest possible route is 61, or approximately 7.8 inches. Pretty cool, eh?

If the ant’s really smart, he’ll know how to pick the shortest route for any box. All he has 
to do is to make sure he crosses over the longest edge of the box. For this problem, 
that’s the 5  edge.

By the way, if you were to take a string in your hands, hold one end at A and the other at 
Z, and then pull it taut, it would end up precisely along one of the three routes shown on 
the box. Each of the three routes is where a taut string would go, depending on which 
edge the string crosses over.

(continued)
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A box, just like any other prism, has a lateral area made up of rectangles (four 
of them) — but its two bases are also rectangles. So to get the surface area of 
a box, you simply need to add up the areas of the six rectangular faces — you 
don’t have to bother with using the standard flat-top surface area formula.

To get the surface area of a cube, a box with six congruent, square faces, you 
just compute the area of one face and then multiply that by six.

 » The lateral area of a cylinder is basically one rectangle rolled into a tube 
shape. Think of the lateral area of a cylinder as one rectangular paper towel 
that rolls exactly once around a paper towel roll. The base of this rectangle 
(you know, the part of the towel that wraps around the bottom of the roll) is 
the same as the circumference of the cylinder’s base (for more on circumfer-
ence, see Chapter 15). And the height of the paper towel is the same as the 
height of the cylinder.

Time to take a look at these formulas in action.

Given: Prism as shown

 is a square with a diagonal of 8ABCD

EEAD EDA and  are 45  angles

Find:  The volume of the pris1. mm

 The surface area of the prism2.     
© John Wiley & Sons, Inc.

1. Find the volume of the prism.

To use the volume formula, you need the prism’s height (CD) and the area of 
its base ( AED). (You’ve probably noticed that this prism is lying on its side. 
That’s why its height isn’t vertical and its base isn’t on the bottom.)

Get the height first. ABCD is a square, so BCD (half of the square) is a 
45 45 90- -  triangle with a hypotenuse of 8. To get the leg of a 45 45 90- -  
triangle, you divide the hypotenuse by 2 (or use the Pythagorean Theorem, 
noting that a b in this case; see Chapter 8 for both methods). So that gives 

you 8
2

4 2 for the length of CD, which, again, is the height of the prism.

And here’s how you get the area of AED. First, note that AD, like CD, is 4 2  
(because ABCD is a square). Next, because EAD and EDA are given 
45  angles, AED must be 90 ; thus, AED is another 45 45 90- -  triangle.  
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Its hypotenuse, AD, has a length of 4 2 , so its legs (AE and DE) are 4 2
2

, or 

4 units long. The area of a right triangle is given by half the product of its legs 
(because you can use one leg for the triangle’s base and the other for its 

height), so Area AED
1
2

4 4 8. You’re all set to finish with the volume 
formula:

Vol area height

 units

Prism base

8 4 2

32 2

45 3 3.

2. Find the surface area of the prism.

Having completed part 1, you have everything you need to compute the 
surface area. Just plug in the numbers:

SA area lateral area

SA area
Flat-top base rectangles2

2 8 ABCDD AEFB DEFCarea area

16 4 2 4 2 4 2 4 4 2 4

16 32 16 2 16 2

48 32 2

93 3 2.  units

Now for a cylinder problem: Given a cylinder as shown with unknown radius, a 
height of 7, and a surface area of 120  units2, find the cylinder’s volume.

© John Wiley & Sons, Inc.

To use the volume formula, you need the cylinder’s height (which you know) and 
the area of its base. To get the area of the base, you need its radius. And to get the 
radius, you use the surface area formula and solve for r:

SA area lateral area

re

Cylinder base2

120 2 2

“rectangle”

“r cctangle  rectangle  height” base “ ”
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Remember that this “rectangle” is rolled around the cylinder and that the “rect-
angle’s” base is the circumference of the cylinder’s circular base. You fill in the 
equation as follows:

120 2 2 7

120 2 14

120 2 7

2

2

2

r r

r r

r r (Divide both  sides by 2

60 72

.)

r r

Now set the equation equal to zero and factor:

r r

r r

r

2 7 60 0

12 5 0

12 5 or 

The radius can’t be negative, so it’s 5. Now you can finish with the volume 
formula:

Vol area height

549.8 units

Cylinder base

r h2

2

3

5 7

175

That does it.

Getting to the Point of  
Pointy-Top Figures

What I call pointy-top figures are solids with one flat base and — hold on to your 
hat — a pointy top. The pointy-top solids are the pyramid and the cone. Even 
though the pyramid has a polygon-shaped base and the cone has a rounded base, 
their volume and surface area formulas are very similar and are conceptually 
identical. More details about pyramids and cones follow:

 » Pyramid: A pyramid is a solid figure with a polygonal base and edges that 
extend up from the base to meet at a single point. As with a prism, the 
corners of a pyramid are called vertices, the segments that connect the 
vertices are called edges, and the flat sides are called faces.
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A regular pyramid is a pyramid with a regular-polygon base, whose peak is 
directly above the center of its base. The lateral faces of a regular pyramid are 
all congruent. All pyramids in this book, and most pyramids in other geometry 
books, are regular pyramids. When I use the term pyramid, I mean a regular 
pyramid.

 » Cone: A cone is a solid figure with a rounded base and a rounded lateral 
surface that connects the base to a single point.

A right circular cone is a cone with a circular base, whose peak lies directly 
above the center of the base. All cones in this book, and most cones in other 
books, are right circular cones. When I refer to a cone, I mean a right  circular 
cone.

Now that you have a better idea of what these figures are, check out their volume 
and surface area formulas:

Volume of pointy-top figures: Here’s how to find the volume of a pyramid 
or cone.

Vol area heightPointy-top base
1
3

Surface area of pointy-top figures: The following formula gives you the surface 
area of a pyramid or cone.

SA area lateral areaPointy-top base triangle(s)

The lateral area of a pointy-top figure is the area of the surface that connects the 
base to the peak (it’s the area of everything but the base). Here’s what this means 
for pyramids and cones:

 » The lateral area of a pyramid is made up of triangles. Each lateral face  
of a pyramid is a triangle with an area given by the ordinary area formula,  

Area base height1
2

. But you can’t use the height of the pyramid for the  

height of its triangular faces, because the height of the pyramid goes straight 
down from its peak — it does not go down along the triangular faces. So 
instead, you use the pyramid’s slant height, which is just the ordinary altitude 
of the triangular faces. (The cursive letter  indicates the slant height.) 
Figure 17-2 shows how height and slant height differ.
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 » The lateral area of a cone is basically one “triangle” rolled into a cone 
shape. The lateral area of a cone is one “triangle” that’s been rolled into a 
cone shape like a snow-cone cup (it’s only kind of a triangle because when 
flattened out, it’s actually a sector of a circle with a curved bottom side — see  

Chapter 15 for details on sectors). Its area is 1
2

base slant height , just like  
the area of one of the lateral triangles in a pyramid. The base of this “triangle” 
equals the circumference of the cone (this works just like the base of the 
lateral “rectangle” in a cylinder).

Ready for a pyramid problem?

       

© John Wiley & Sons, Inc.

The key to pyramid problems (and to a lesser degree, prism, cylinder, and cone 
problems) is right triangles. Find them and then solve them with the Pythagorean 
Theorem or by using your knowledge of special right triangles (see Chapter 8).

Congruent right triangles are all over the place in pyramids. Would you believe 
that in a pyramid like the one in this problem, there are 28 different right 

Given: A regular pyramid 

Diagonal  
has a length of 

 h

PT

RZ

12

aas a length of 10

Find:  The pyramid s 

    volume
 The p

1

2

.

.

’

yyramid s 

    surface area
’

FIGURE 17-2:  
A pyramid and a 

cone with their 
heights and slant 

heights. 
© John Wiley & Sons, Inc.
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triangles that could be used to solve different parts of the problem? (Many of these 
triangles aren’t shown in this figure.) Here they are:

 » Eight congruent right triangles, like PZW , are on the faces (these have their 
right angles at W, Q, S, or U).

 » Eight right triangles are standing straight up with their right angles at A and 
one vertex at Z. The four of these triangles with a vertex at Q, S, U, or W (such 
as QZA) are congruent, and the other four with a vertex at P, R, T, or V (such 
as PZA) are congruent.

 » You have four half-squares like PTV . These are congruent 45 45 90- -  
triangles.

 » Within the base are eight little congruent 45 45 90- -  triangles like PAW .

(In case you’re curious, there are 48 other right triangles — depending how you 
count them — that you’re very unlikely to use, which brings the grand total to 76 
right triangles!)

Okay, so back to the pyramid problem.

1. Find the pyramid’s volume.

To compute the volume of a pyramid, you need its height (AZ) and the area of 
its square base, PRTV. You can get the height by solving right triangle PZA. 
The lateral edges of a regular pyramid are congruent; thus, the hypotenuse of 

PZA, PZ , is congruent to RZ , so its length is also 10. PA is half of the diagonal 
of the base, so it’s 6. Triangle PZA is thus a 3 4 5- -  triangle blown up to twice its 
size, namely a 6 8 10- -  triangle, so the height, AZ , is 8 (or you can use the 
Pythagorean Theorem to get AZ  — see Chapter 8 for more on this theorem 
and Pythagorean triples).

To get the area of square PRTV, you can, of course, first figure the length of its 
sides; but don’t forget that a square is a kite, so you can use the kite area 
formula instead — that’s the quickest way to get the area of a square if you 
know the length of a diagonal (see Chapter 10 for more about quadrilaterals). 
Because the diagonals of a square are equal, both of them are 12, and you 
have what you need to use the kite area formula:

Area

 units

PRTV d d1
2
1
2

12 12

72

1 2

2
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Now use the pointy-top volume formula:

Vol area height

 units

Pyramid base
1
3
1
3

72 8

192 3

Note: This is much less than the volume of the Great Pyramid at Giza  
(see Chapter 22).

2. Find the pyramid’s surface area.

To use the pyramid surface area formula, you need the area of the base (which 
you got in part 1 of the problem) and the area of the triangular faces. To get 
the faces, you need the slant height, ZW .

First, solve PAW . It’s a 45 45 90  triangle with a hypotenuse (PA) that’s 
6 units long; to get the legs, you divide the hypotenuse by 2 (or use the 
Pythagorean Theorem — see Chapter 8). 6

2
3 2, so PW  and AW  both 

have a length of 3 2 . Now you can get ZW  by using the Pythagorean Theorem 

with either of two right triangles, PZW  or AZW . Take your pick. How about 
AZW?

ZW AZ AW

ZW

2 2 2

2 2
8 3 2

64 18

82

82

Now you’re all set to finish with the surface area formula. (One last fact you 
need is that PV  is 6 2 because, of course, it’s twice as long as PW .)

SA area lateral area

base s

Pyramid base four triangles

72 4 1
2

llant height

 units

72 4 1
2

6 2 82

72 12 164

72 24 41

225 7. 22

That’s a wrap.
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Now for a cone problem:

Given : Cone with base diameter of 4 3

The angle between the coone s
height and slant height is 30

Find : 1. The cone s vol

’

’ uume

2. Its surface area              

© John Wiley & Sons, Inc.

1. Find the cone’s volume.

To compute the cone’s volume, you need its height and the radius of its base. 
The radius is, of course, half the diameter, so it’s 2 3 . Then, because the height 
is perpendicular to the base, the triangle formed by the radius, the height, and 
the slant height is a 30 60 90- -  triangle. You can see that h is the long leg and 
r the short leg, so to get h, you multiply r by 3  (see Chapter 8):

h 3 2 3 6

You’re ready to use the cone volume formula:

Vol area height

75.4 unit

Cone base
1
3
1
3
1
3

2 3 6

24

2

2

r h

ss3

2. Find the cone’s surface area.

For the surface area, the only other thing you need is the slant height, . The 
slant height is the hypotenuse of the 30 60 90- -  triangle, so it’s just twice the 
radius, which makes it 4 3 . Now plug everything into the cone surface area 
formula:
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SA area lateral area

base slant hei

Cone base triangle

r 2 1
2

gght

2

2

r r2

2

1
2

2 3 1
2

2 3 4 3

12 24

36

113



..1 2 units

Rounding Things Out with Spheres
The sphere clearly doesn’t fit into the flat-top or pointy-top categories because it 
doesn’t really have a top at all. Therefore, it has its own unique volume and sur-
face area formulas. First, here’s the definition of a sphere.

A sphere is the set of all points in 3-D space equidistant from a given point, the 
sphere’s center. (Plain English definition: A sphere is, you know, a ball — duh.) 
The radius of a sphere goes from its center to its surface.

Volume and surface area of a sphere: Use the following formulas for the volume 
and surface area of a sphere.

 » VolSphere
4
3

3r

 » SA Sphere 4 2r

Have a ball with the following sphere problem: What’s the volume and surface 
area of a basketball in a box (a cube, of course) if the box has a surface area of 486 
square inches?

© John Wiley & Sons, Inc.
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A cube (or any other ordinary box shape) is a special case of a prism, but you don’t 
need to use the fancy-schmancy prism formula, because the surface area of a cube 
is simply made up of six congruent squares. Call the length of an edge of the cube s. 
The area of each side is therefore s2. The cube has six faces, so its surface area is 
6s2. Set this equal to the given surface area of 486 square inches and solve for s:

6 486

81

9

2

2

s

s

s  inches

Thus, the edges of the cube are 9 inches, and because the basketball has the same 
width as the box it comes in, the diameter of the ball is also 9 inches; its radius is 
half of that, or 4.5 inches. Now you can finish by plugging 4.5 into the two sphere 
formulas:

Vol

 cubic inches

Sphere
4
3
4
3

4 5

121 5

381 7

3

3

r

.

.

.

(By the way, this is slightly more than half the volume of the box, which is 93, or 
729 cubic inches.)

Now here’s the surface area solution:

SA

 square inches

Sphere 4

4 4 5

81

254 5

2

2

r

.

.

This sphere, in case you’re curious, is the actual size of an official NBA basketball. 
To end this chapter, here’s a quick trivia question for you (come up with your 
guess before reading the answer). Now that you know that the diameter of a 
 basketball is 9 inches, what do you think the diameter of a basketball hoop is? The 
surprising answer is that the hoop is a full two times as wide — 18 inches!
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THE WATER-INTO-WINE VOLUME PROBLEM
Here’s a great volume brainteaser. Say you have a gallon container of water and a gallon 
container of wine. You take a ladle, pour a ladle of wine into the water container, and then 
stir it up. Next, you take a ladle of the water/wine mixture and pour it back into the wine 
container. Here’s the question: After doing both of these transfers, is there more wine in 
the water or more water in the wine? Come up with your answer before reading on.

Here’s how most people’s reasoning goes: A ladle of 100 percent wine was poured into 
the water, but then a ladle of water mixed with a little wine was poured back into the 
wine container. So with that second pouring, a little wine was going back into the wine 
container. And thus it seems that there would be less water in the wine container than 
wine in the water container.

Well, the surprising answer is that the amount of water in the wine is exactly the same 
as the amount of wine in the water. When you think about it, you’ll see that this must be 
the case. Both containers started with a gallon of liquid, right? Next, a ladle of liquid was 
poured into the water container, and then a ladle of liquid was taken out of that con-
tainer and poured back into the wine container. The final result, of course, is that both 
containers end up, as they started, with a gallon of liquid in them.

Now consider the amount of wine that’s in the water at the end of the process. That, of 
course, is the amount of wine that’s missing from the wine container. And because you 
know that the wine container ends up with a gallon of liquid, the amount of water in the 
wine that will fill that container back up to a gallon must be the same as the amount of wine 
that’s missing. The amounts must be the same if you end up with a gallon in both 
 containers. Hard to believe, but true.
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Explore coordinate geometry.

Discover reflections, translations, and rotations.

Tackle locus problems.
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IN THIS CHAPTER

Finding a line’s slope and a segment’s 
midpoint

Calculating the distance between 
two points

Doing geometry proofs with algebra

Working with equations of lines and 
circles

Coordinate Geometry

In this chapter, you investigate the same sorts of things you see in previous 
chapters: perpendicular lines, right triangles, circles, perimeter, area, the diag-
onals of quadrilaterals, and so on. What’s new about this chapter on coordinate 

geometry is that these familiar geometric objects are placed in the x-y coordinate 
system and then analyzed with algebra. You use the coordinates of the points of a 
figure — points like x y,   or 10 2,   — to prove or compute something about the 
figure. You reach the same kind of conclusions as in previous chapters; it’s just the 
methods that are different.

The x-y, or Cartesian, coordinate system is named after René Descartes (1596–
1650). Descartes is often called the father of coordinate geometry, despite the fact 
that the coordinate system he used had an x-axis but no y-axis. There’s no ques-
tion, though, that he’s the one who got the ball rolling. So if you like coordinate 
geometry, you know who to thank (and if you don’t, you know who to blame).

Getting Coordinated with  
the Coordinate Plane

I have a feeling that you already know all about how the x-y coordinate system 
works, but if you need a quick refresher, no worries. Figure 18-1 shows you the lay 
of the land of the coordinate plane.

Chapter 18
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Here’s the lowdown on the coordinate plane you see in Figure 18-1:

 » The horizontal axis, or x-axis, goes from left to right and works exactly like a 
regular number line. The vertical axis, or y-axis, goes — ready for a shock? — 
up and down. The two axes intersect at the origin 0 0,  .

 » Points are located within the coordinate plane with pairs of coordinates called 
ordered pairs — like 8 6,   or 10 3,  . The first number, the x-coordinate, 
tells you how far you go right or left; the second number, the y-coordinate, tells 
you how far you go up or down. For 10 3,  , for example, you go left 10 and 
then up 3.

 » Going counterclockwise from the upper-right-hand section of the coordinate 
plane are quadrants I, II, III, and IV:

• All points in quadrant I have two positive coordinates, ,  .

• In quadrant II, you go left (negative) and then up (positive), so it’s ,  .

• In quadrant III, it’s ,  .

• In quadrant IV, it’s ,  .

Because all coordinates in quadrant I are positive, it’s often the easiest 
quadrant to work in.

FIGURE 18-1:  
The x-y 

 coordinate 
system. 

© John Wiley & Sons, Inc.
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 » The Pythagorean Theorem (see Chapter 8) comes up a lot when you’re using 
the coordinate system because when you go right and then up to plot a point 
(or left and then down, and so on), you’re tracing along the legs of a right 
triangle; the segment connecting the origin to the point then becomes the 
hypotenuse of the right triangle. In Figure 18-1, you can see the 6 8 10- -  right 
triangle in quadrant I.

The Slope, Distance, and 
Midpoint Formulas

Like Shane Douglas, Chris Candido, and Bam Bam Bigelow of pro wrestling fame, 
the slope, distance, and midpoint formulas are sort of the Triple Threat of coordi-
nate geometry. If you have two points in the coordinate plane, the three most 
basic questions you can ask about them are the following:

 » What’s the distance between them?

 » What’s the location of the point halfway between them (the midpoint)?

 » How much is the segment that connects the points tilted (the slope)?

These three questions come up in a plenitudinous and plethoric passel of problems. 
In a minute, you’ll see how to use the three formulas to answer these questions.

But right now, I just want to caution you not to mix up the formulas — which is 
easy to do because all three formulas involve points with coordinates x y1 1,   and 
x y2 2,  . My advice is to focus on why the formulas work instead of just memoriz-

ing them by rote. That’ll help you remember the formulas correctly.

The slope dope
The slope of a line basically tells you how steep the line is. You may have used the 
slope formula before this in an Algebra I class. But in case you’ve forgotten it, 
here’s a refresher on the formula and also the straight dope on some common 
types of lines.

Slope formula: The slope of a line containing two points, x y1 1,   and x y2 2,  , is 
given by the following formula (a line’s slope is often represented by the letter m):

Slope rise
run

m y y
x x

2 1

2 1
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Note: It doesn’t matter which points you designate as x y1 1,   and x y2 2,  ; the 
math works out the same either way. Just make sure that you plug your numbers 
into the right places in the formula.

The rise is the “up distance,” and the run is the “across distance” shown in 
 Figure 18-2. To remember this, note that you rise up but you run across, and also 
that “rise” rhymes with “y’s.”

Take a look at the following list and Figure 18-3, which show you that the slope of 
a line increases as the line gets steeper and steeper:

 » A horizontal line has no steepness at all, so its slope is zero. A good way to 
remember this is to think about driving on a horizontal, flat road — the road 
has zero steepness or slope.

 » A slightly inclined line might have a slope of, say, 1
5

.

 » A line at a 45  angle has a slope of 1.

 » A steeper line could have a slope of 5.

 » A vertical line (the steepest line of all) sort of has an infinite slope, but math 
people say that its slope is undefined. (It’s undefined because with a vertical 
line, you don’t go across at all, and thus the run in rise

run
 would be zero, and 

you can’t divide by zero). Think about driving up a vertical road: You can’t do 
it — it’s impossible. And it’s impossible to compute the slope of a vertical line.

FIGURE 18-2:  
Slope is the 

ratio of the rise 
to the run. 

© John Wiley & Sons, Inc.
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The lines you see in Figure 18-3 have positive slopes (except for the horizontal and 
vertical lines). Now I introduce you to lines with negative slopes, and I give you a 
couple of ways to distinguish the two types of slopes:

 » Lines that go up to the right have a positive slope. Going from left to right, 
lines with positive slopes go uphill.

 » Lines that go down to the right have a negative slope. Going from left to 
right, lines with negative slopes go downhill.

A line with a Negative slope goes in the direction of the middle part of the capital 
letter N. See Figure 18-4.

Just like lines with positive slopes, as lines with negative slopes get steeper and 
steeper, their slopes keep “increasing”; but here, increasing means becoming a 
larger and larger negative number (which is technically decreasing).

FIGURE 18-3:  
The slope tells 

you how  
steep a line is. 

© John Wiley & Sons, Inc.

FIGURE 18-4:  
A negative slope 

goes up to the 
left and down to 

the right. 
© John Wiley & Sons, Inc.
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Here are some pairs of lines with special slopes:

 » Slopes of parallel lines: The slopes of parallel lines are equal.

For two vertical lines, however, there’s a minor technicality: If both lines are 
vertical, you can’t say that their slopes are equal. Their slopes are both unde-
fined, so they have the same slope, but because undefined doesn’t equal any-
thing, you can’t say that undefined = undefined.

 » Slopes of perpendicular lines: The slopes of perpendicular lines are opposite 
reciprocals of each other, such as 7

3
 and 3

7
 or −6 and 1

6
.

This rule works unless one of the perpendicular lines is horizontal (slope = 0) 
and the other line is vertical (slope is undefined).

Going the distance with the  
distance formula
If two points in the x-y coordinate system are straight across from each other or 
directly above and below each other, finding the distance between them is a snap. 
It works just like finding the distance between two points on a number line: You 
just subtract the smaller number from the larger. Here are the formulas:

 » Horizontal distance right left-coordinate -coordinatex x

 » Vertical distance top bottom-coordinate -coordinatey y

Distance formula: Finding diagonal distances is a bit trickier than computing hor-
izontal and vertical distances. For this, mathematicians whipped up the distance 
formula, which gives the distance between two points x y1 1,   and x y2 2,  :

Distance x x y y2 1
2

2 1
2

Note: Like with the slope formula, it doesn’t matter which point you call x y1 1,   
and which you call x y2 2,  .

Figure 18-5 illustrates the distance formula.

The distance formula is simply the Pythagorean Theorem a b c2 2 2  solved for 

the hypotenuse: c a b2 2 . See Figure 18-5 again. The legs of the right triangle 
(a and b under the square root symbol) have lengths equal to x x2 1  and y y2 1 .  
Remember this connection, and if you forget the distance formula, you’ll be able 
to solve a distance problem with the Pythagorean Theorem instead.
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Don’t mix up the slope formula with the distance formula. You may have noticed 
that both formulas involve the expressions x x2 1  and y y2 1 . That’s because 
the lengths of the legs of the right triangle in the distance formula are the same 
as the rise and the run from the slope formula. To keep the formulas straight, just 
focus on the fact that slope is a ratio and distance is a hypotenuse.

Meeting each other halfway with  
the midpoint formula
The midpoint formula gives you the coordinates of a line segment’s midpoint. 
The way it works is very simple: It takes the average of the x-coordinates of the 
segment’s endpoints and the average of the y-coordinates of the endpoints. 
These averages give you the location of a point that is exactly in the middle of the 
segment.

Midpoint formula: To find the midpoint of a segment with endpoints at x y1 1,   
and x y2 2,  , use the following formula:

Midpoint  x x y y1 2 1 2

2 2
,

Note: It doesn’t matter which point is x y1 1,   and which is x y2 2,  .

FIGURE 18-5:  
The distance 
between two 

points is also the 
length of the 
hypotenuse. 

© John Wiley & Sons, Inc.
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The whole enchilada: Putting the  
formulas together in a problem
Here’s a problem that shows how to use the slope, distance, and midpoint 
formulas.

Given: Quadrilateral 
as shown

Solve:  Show that 
is 

PQRS

PQRS1.
aa rectangle
 Find the perimeter

of 
 Show that the d

2

3

.

.
PQRS

iiagonals
of  bisect each other,
and find the point
where

PQRS

  they intersect    
© John Wiley & Sons, Inc.

1. Show that PQRS is a rectangle.

The easiest way to show that PQRS is a rectangle is to compute the slopes of 
its four sides and then use ideas about the slopes of parallel and perpendicular 
lines (see Chapter 11 for ways to prove that a quadrilateral is a rectangle).

Slope

Slope

Slope

y y
x x

QR

PS

2 1

2 1

8 2
9 1

6
8

3
4

4 2
12 4

6
8

33
4

2 2
1 4

4
3

4
3

8 4
9 12

4
3

4
3

Slope

Slope

QP

RS

Seeing these four slopes, you can now conclude that PQRS is a rectangle in 
two different ways — neither of which requires any further work.

First, because the slopes of QR and PS  are equal, those segments are parallel. 
Ditto for QP  and RS . Quadrilateral PQRS is thus a parallelogram. Then you 
check any vertex to see whether it’s a right angle. Suppose you check vertex Q. 

Because the slopes of QP  4
3

 and QR 3
4

 are opposite reciprocals, those 

segments are perpendicular, and thus Q is a right angle. That does it because 
a parallelogram with a right angle is a rectangle (see Chapter 11).

Second, you can see that the four segments have a slope of either 3
4

 or 4
3

. 

Thus, you can quickly see that, at each of the four vertices, a pair of perpen-
dicular segments meet. All four vertices are therefore right angles, and a 
quadrilateral with four right angles is a rectangle (see Chapter 10). That does it.
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2. Find the perimeter of PQRS.

Use the distance formula. Because you now know that PQRS is a rectangle and 
that its opposite sides are therefore congruent, you need to compute the 
lengths of only two sides (the length and the width):

Distance x x y y2 1
2

2 1
2

Distance  to P Q 1 4 2 2

3 4

25

5

2 2

2 2

Distance  to Q R 9 1 8 2

8 6

100

10

2 2

2 2

Now that you have the length and width, you can easily compute the perimeter:

Perimeter length widthPQRS 2 2

2 10 2 5

30

3. Show that the diagonals of PQRS bisect each other, and find the point where 
they intersect.

If you know your rectangle properties (see Chapter 10), you know that the 
diagonals of PQRS must bisect each other. But another way to show this is 
with coordinate geometry. The term bisect in this problem should ring the 
midpoint bell. So use the midpoint formula for each diagonal:

Midpoint  

Midpoint  

 

x x y y1 2 1 2

2 2

1 12
2

2 4
2

6 5 3

,

,

. ,

Midpoint  

 

4 9
2

2 8
2

6 5 3

,

. ,

The fact that the two midpoints are the same shows that each diagonal goes 
through the midpoint of the other, and that, therefore, each diagonal bisects 
the other. Obviously, the diagonals cross at 6 5 3. ,  . That’s a wrap.
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Proving Properties Analytically
In this section, I show you how to do a proof analytically, which means using 
 algebra. You can use analytic proofs to prove some of the properties you see earlier 
in the book, such as the property that the diagonals of a parallelogram bisect each 
other or that the diagonals of an isosceles trapezoid are congruent. In previous 
chapters, you prove this type of thing with ordinary two-column proof methods, 
using things such as congruent triangles and CPCTC. Here, you take a different 
tack and use the location of shapes in the coordinate system as the basis for your 
proofs.

Analytic proofs have two basic steps:

1. Draw your figure in the coordinate system and label its vertices.

2. Use algebra to prove something about the figure.

The following analytic proof walks you through this process. Here’s the proof: 
First, prove analytically that the midpoint of the hypotenuse of a right triangle is 
equidistant from the triangle’s three vertices, and then show analytically that the 
median to this midpoint divides the triangle into two triangles of equal area.

Step 1: Drawing a general figure
The first step in an analytic proof is to draw a figure in the x-y coordinate system 
and give its vertices coordinates. You want to put the figure in a convenient posi-
tion that makes the math work out easily. For example, sometimes putting one of 
the vertices of your figure at the origin, 0 0,  , makes the math easy because add-
ing and subtracting with zeros is so simple. Quadrant I is also a good choice 
because all coordinates are positive there.

The figure you draw has to represent a general class of shapes, so you make the 
coordinates letters that can take on any values. You can’t label the figure with 
numbers (except for using zero when you place a vertex at the origin or on the x- 
or y-axis) because that’d give the figure an exact size and shape — and then any-
thing you proved would only apply to that particular shape rather than to an entire 
class of shapes.

Here’s how you create your figure for the triangle proof:

 » Choose a convenient position and orientation for the figure in the x-y 
coordinate system. Because the x- and y-axes form a right angle at the origin 
0 0,  , that’s the natural choice for the position of the right angle of the right 
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triangle, with the legs of the triangle lying on the two axes. Then you have to 
decide which quadrant the triangle should go in. Unless you have some 
reason to pick a different quadrant, quadrant I is the best way to go.

 » Choose suitable coordinates for the two vertices on the x- and y-axes. 
You’d often go with something like a,  0  and 0,  b , but here, because you’re 
going to end up dividing these coordinates by 2 when you use the midpoint 
formula, the math will be easier if you use 2 0a,   and 0 2,  b . Otherwise, 
you have to deal with fractions. Egad! Figure 18-6 shows the final diagram.

In an analytic proof, when you decide how to position and label your figure, you 
must do so in a way such that there is, as mathematicians say, no loss of generality. 
In this proof, for example, if you decide to give the vertex that’s on the x-axis the 
coordinates 2 0a,   — as I recommend above — then you shouldn’t give the vertex 
that’s on the y-axis the coordinates 0 2,  a  because that would mean that the two 
legs of the right triangle would have the same length — and that would mean that 
your triangle would be a 45 45 90- -  triangle. If you label the vertices like that, 
then all the conclusions that you draw from this proof would be valid only for 
45 45 90- -  right triangles, not all right triangles.

The right triangle in the Figure 18-6 has been drawn with no loss of generality: 
With vertices at 0 0,  , 2 0a,  , and 0 2,  b , it can represent every possible right 
triangle. Here’s why this works: Imagine any right triangle of any size or shape, 
located anywhere in the coordinate system. Without changing its size or shape, you 
could slide it so that its right angle was at the origin and then rotate it so that its 
legs would lie on the x- and y-axes. You could then pick values for a and b so that 
2a and 2b would work out to equal the lengths of your hypothetical triangle’s legs.

Because this proof includes a general right triangle, as soon as this proof is done, 
you’ll have proved a result that’s true for every possible right triangle in the 
 universe. All infinitely many of them! Pretty cool, right?

FIGURE 18-6:  
A right triangle 

that represents 
all right triangles. 

© John Wiley & Sons, Inc.
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Step 2: Solving the problem algebraically
Okay, so after you complete your drawing (see Figure 18-6 in the preceding sec-
tion), you’re ready to do the algebraic part of the proof. The first part of the problem 
asks you to prove that the midpoint of the hypotenuse is equidistant from the tri-
angle’s vertices. To do that, start by determining the midpoint of the hypotenuse:

Midpoint  

Midpoint  

 

x x y y

a b

a

QR

1 2 1 2

2 2

0 2
2

2 0
2

,

,

, bb

Figure 18-7 shows the midpoint, M, and median, PM .

To prove the equidistance of M to P, Q, and R, you use the distance formula:

Distance x x y y2 1
2

2 1
2

Distance  to M P a b

a b

0 0
2 2

2 2

Distance  to M Q a b b

a b

a b

0 2
2 2

2 2

2 2

These distances are equal, and that completes the equidistance portion of the 

proof. (Because M is the midpoint of QR, MQ must be congruent to MR, and thus 

there’s no need to show that the distance from M to R is also a b2 2 , though you 
may want to do so as an exercise.)

FIGURE 18-7:  
The midpoint of 

the hypotenuse is 
at a b,  . 

© John Wiley & Sons, Inc.
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For the second part of the proof, you must show that the segment that goes from 
the right angle to the hypotenuse’s midpoint divides the triangle into two triangles 
with equal areas — in other words, you have to show that Area AreaPQM PMR.  
To compute these areas, you need to know the lengths of the base and altitude of 
both triangles. Figure 18-8 shows the triangles’ altitudes.

Note that because base PR of PMR is horizontal, the altitude drawn to that base 

TM  is vertical, and thus you know that T is directly below a b,   at a,  0 . With 

PQM  (using vertical base PQ), you create horizontal altitude SM  and locate point 

S directly to the left of a b,   at 0,  b .

Now you’re ready to use the two bases and two altitudes to show that the triangles 
have equal areas. To get the lengths of the bases and altitudes, you could use the 
distance formula, but you don’t need to because you can use the nifty shortcut for 
horizontal and vertical distances from “Going the distance with the distance 
formula”:

Horizontal distance right left-coordinate -coordinatex x

Vertical distance top bottom-coordinate -coordinatey y

For : Vertical distance

Horizontal distan
Base PQM b bPQ 2 0 2

cce Altitude SM a a0

For : Vertical distance

Horizontal distan
Base PMR a aPR 2 0 2

cce Altitude TM b b0

FIGURE 18-8:  
Drawing in the 

altitudes of 
PQM  and 

PMR. 
© John Wiley & Sons, Inc.
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Time to wrap this up using the triangle area formula:

Area AreaPQM PMRbh

PQ SM

b a

ab

PR TM1
2
1
2
1
2

2

1
2
1
22

2a b

ab

The areas are equal. That does it.

Deciphering Equations for  
Lines and Circles

If you’ve already taken Algebra I, you’ve probably dealt with graphing lines in the 
coordinate system. Graphing circles may be something new for you, but you’ll 
soon see that there’s nothing to it. Lines and circles are, of course, very different. 
One is straight, the other curved. One is endless, the other limited. But what they 
have in common is that neither has a beginning or an end, and you could travel 
along either one till the end of time. Hmm, I feel a quote from an old TV show 
coming on . . . “You are about to enter another dimension, a dimension not only of 
sight and sound but of mind . . . It is a dimension as vast as space and as timeless 
as infinity . . . Next stop, the Twilight Zone.”

Line equations
Talk about the straight and narrow! Lines are infinitely long, perfectly straight, 
and though it’s hard to imagine, infinitely narrower than a strand of hair.

Here are the basic forms for equations of lines:

 » Slope-intercept form: Use this form when you know (or can easily find) a 
line’s slope and its y-intercept (the point where the line crosses the y-axis). See 
the earlier section titled “The slope dope” for details on slope.

y mx b,

where m is the slope and b is the y-intercept.
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 » Point-slope form: This is the easiest form to use when you don’t know a line’s 
y-intercept but you do know the coordinates of a point on the line; you also 
need to know the line’s slope.

y y m x x1 1 ,

where m is the slope and (x1, y1) is a point on the line.

 » Horizontal line: This form is used for lines with a slope of zero.

y b,

where b is the y-intercept.

The b (or the number that’s plugged into b) tells you how far up or down the 
line is along the y-axis. Note that every point along a horizontal line has the 
same y-coordinate, namely b. In case you’re curious, this equation form is a 
special case of y mx b, where m 0.

 » Vertical line: And here’s the equation for a line with an undefined slope.

x a,

where a is the x-intercept.

The a (or the number that’s plugged into a) tells you how far to the right or left 
the line is along the x-axis. Every point along a vertical line has the same 
x-coordinate, namely a.

Don’t mix up the equations for horizontal and vertical lines. This mistake is 
extremely common. Because a horizontal line is parallel to the x-axis, you might 
think that the equation of a horizontal line would be x a. And you might figure 
that the equation for a vertical line would be y b because a vertical line is parallel 
to the y-axis. But as you see in the preceding equations, it’s the other way around.

The standard circle equation
In Part 5, you see all sorts of interesting circle properties, formulas, and theorems 
that have nothing to do with a circle’s position or location. In this section, cour-
tesy of Descartes, you investigate circles that do have a location; you analyze cir-
cles positioned in the x-y coordinate system using analytic methods — that is, 
with equations and algebra. For example, there’s a nice analytic connection 
between the circle equation and the distance formula because every point on a 
circle is the same distance from its center (see the example problem for more 
details).
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Here are the circle equations:

 » Circle centered at the origin, 0 0,  :

x y r2 2 2

  where r is the circle’s radius.

 » Circle centered at any point h k,  :

x h y k r
2 2 2,

  where h k,   is the center of the circle and r is its radius.

(As you may recall from an algebra course, it seems backward, but subtracting 
any positive number h from x actually moves the circle to the right, and 
 subtracting any positive number k from y moves the circle up; adding a 
number to x moves the circle left, and adding a positive number to y moves 
the circle down.)

Ready for a circle problem? Here you go:

Given: Circle  has its center
at   and is tangent
to a 

C
4 6,
lline at  

Find:  The equation of the circle

 The ci

1 2

1

2

,

.

. rrcle s - and -intercepts

 The equation of the tangent 

’ x y

3. lline  
© John Wiley & Sons, Inc.

1. Find the equation of the circle.

All you need for the equation of a circle is its center (you know it) and its radius. 
The radius of the circle is just the distance from its center to any point on the 
circle. Since the point of tangency is given, that’s the point to use. To wit —
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Distance  to C T 4 1 6 2

3 4

5

2 2

2 2

Now you finish by plugging the center coordinates and the radius into the 
general circle equation:

x h y k r

x y

2 2 2

2 2 24 6 5

2. Find the circle’s x- and y-intercepts.

To find the x-intercepts for any equation, you just plug in 0 for y and solve for x:

x y

x

x

x

4 6 5

4 0 6 5

4 36 25

4 11

2 2 2

2 2 2

2

2

You can’t square something and get a negative number, so this equation has 
no solution; therefore, the circle has no x-intercepts. (I realize that you can just 
look at the figure and see that the circle doesn’t intersect the x-axis, but I 
wanted to show you how the math confirms this.)

To find the y-intercepts, plug in 0 for x and solve for y :

0 4 6 5

16 6 25

6 9

6 9

3 6

3 9

2 2 2

2

2

y

y

y

y

y

y  or 

Thus, the circle’s y-intercepts are 0 3,   and 0 9,  .
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3. Find the equation of the tangent line.

For the equation of a line, you need a point (you have it) and the line’s slope. In 
Chapter 14, you find out that a tangent line is perpendicular to a radius drawn 
to the point of tangency. So just compute the slope of the radius, and then the 
opposite reciprocal of that is the slope of the tangent line (for more on slope, 
see the earlier “The slope dope” section):

Slope

SlopeRadius 

y y
x x

CT

2 1

2 1

6 2
4 1

4
3

Therefore,

SlopeTangent line
3
4

Now you plug this slope and the coordinates of the point of tangency into the 
point-slope form for the equation of a line:

y y m x x

y x

1 1

2 3
4

1

Now clean this up a bit:

4 2 3 1

4 8 3 3

3 4 11

y x

y x

x y

Of course, if you instead choose to put this in slope-intercept form, you get 

y x3
4

11
4

. Over and out.
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IN THIS CHAPTER

Reflections: The components of all 
other transformations

Translations: Slides made of two 
reflections

Rotations: Revolutions made of two 
reflections

Glide reflections: A translation plus a 
reflection (three total reflections)

Changing the Scene 
with Geometric 
Transformations

A transformation takes a “before” figure in the x-y coordinate system — say, 
a triangle, parallelogram, polygon, anything — and turns it into a related 
“after” figure. The original figure is called the pre-image, and the new 

figure is called the image. The transformation may expand or shrink the original 
figure, warp it into a funny-looking version of itself (like the way those curving 
amusement park mirrors warp your image), spin the figure around, slide it to a 
new position, flip it over — or the transformation may change the figure in some 
combination of those ways.

In this chapter, you work with a special subset of transformations called isome-
tries. These are the transformations in which the “before” and “after” figures are 
congruent, which, as you know, means that the figures are exactly the same shape 
and size. I explain the four types of isometries: reflections, translations, rotations, 
and glide reflections. The discussion starts with reflections, the building blocks of 
the other three types of isometries.

Chapter 19
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Note: This chapter asks you to find slopes, midpoints, distances, perpendicular 
bisectors, and line equations in the coordinate plane. If you need some background 
on these things, please refer to Chapter 18.

Some Reflections on Reflections
A geometric reflection, like it sounds, works like a reflection in a mirror. Figure 19-1 
shows someone in front of a mirror looking at the reflection of a triangle that’s on 
the floor in front of the mirror. Note: The image of ABC  in the mirror is labeled 
with the same letters except a prime symbol is added to each letter ( A CB ). Most 
transformation diagrams are handled this way.

As you can see, the image of the triangle in the mirror is flipped over compared 
with the real triangle. Mirrors (and mathematically speaking, reflections) always 
produce this kind of flipping. Flipping a figure switches its orientation, a topic I 
discuss in the next section.

Figure 19-2 shows that a reflection can also be thought of as a folding. On the left, 
you see a folded card with a half-heart shape drawn on it; in the center, you see 
the folded half-heart that’s been cut out; and on the right, you see the heart 
unfolded. The left and right sides of the heart are obviously the same shape. Each 
side is the reflection of the other side. The crease or fold-line running down the 
center of the heart is called the reflecting line, which I discuss later in this chapter. 
(I bet you didn’t realize that when you were making valentines in first grade, you 
were dealing with mathematical isometries!)

FIGURE 19-1:  
A triangle’s 

reflection in a 
mirror. 

© John Wiley & Sons, Inc.
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Reflections are the building blocks of the other three isometries: You can produce 
the other isometries with a series of reflections:

 » Translations are the equivalent of two reflections.

 » Rotations are the equivalent of two reflections.

 » Glide reflections are the equivalent of three reflections.

I discuss translations, rotations, and glide reflections later in this chapter. But 
before moving on to them, I briefly discuss orientation and then show you how to 
do reflection problems.

Getting oriented with orientation
In Figure 19-3, PQR  has been reflected across line l to produce P Q R . Triangles 

PQR  and P Q R  are congruent, but their orientations are different:

 » One way to see that they have different orientations is that you can’t get 
P RQ  and P Q R  to stack on top of each other — no matter how you rotate 

or slide them — without flipping one of them over.

 » A second characteristic of figures with different orientations is the clockwise/
counterclockwise switch. Notice that in PQR , you go counterclockwise from 
P to Q to R, but in the reflected triangle, P Q R , you go clockwise from P  to 
Q  to R .

Note that — as with the heart in Figure 19-2 — the reflection shown in  Figure 19-3 
can be thought of as a folding. If you were to fold this page along line l, PQR  
would end up stacked perfectly on P Q R , with P on P , Q on Q , and R on R .

FIGURE 19-2:  
Reflections from 
the heart — will 

you be my 
valentine? 

© John Wiley & Sons, Inc.
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Reflections and orientation: Reflecting a figure once switches its orientation. 
When you reflect a figure more than once, the following rules apply:

 » If you reflect a figure and then reflect it again over the same line or a different 
line, the figure returns to its original orientation. More generally, if you reflect 
a figure an even number of times, the final result is a figure with the same 
orientation as the original figure.

 » Reflecting a figure an odd number of times produces a figure with the opposite 
orientation.

Finding a reflecting line
In a reflection, the reflecting line, as you’d probably guess, is the line over which 
the pre-image is reflected. Figure  19-3 illustrates an important property of 
reflecting lines: If you form RR  by connecting pre-image point R with its image 
point R  (or P with P  or Q with Q ), the reflecting line, l, is the perpendicular 
bisector of RR .

A reflecting line is a perpendicular bisector: When a figure is reflected, the reflect-
ing line is the perpendicular bisector of all segments that connect pre-image 
points to their corresponding image points.

Here’s a problem that uses this idea: In the following figure, J K L  is the reflec-
tion of JKL over a reflecting line. Find the equation of the reflecting line using 
points J and J . Then confirm that this reflecting line sends K to K  and L to L .

FIGURE 19-3:  
Reflecting PQR  

over line l 
switches the 

figure’s 
 orientation. 

© John Wiley & Sons, Inc.
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The reflecting line is the perpendicular bisector of segments connecting pre-
image points to their image points. Because the perpendicular bisector of a seg-
ment goes through the segment’s midpoint, the first thing you need to do to find 
the equation of the reflecting line is to find the midpoint of JJ :

Midpoint  

Midpoint  

x x y y

JJ

1 2 1 2

2 2

1 11
2

9 3
2

5

,

,

,   6

Next, you need the slope of JJ :

Slope

Slope

y y
x x

JJ

2 1

2 1

3 9
11 1

6
12

1
2

The slope of the perpendicular bisector of JJ  is the opposite reciprocal of the slope 

of JJ  (as I explain in Chapter 18). JJ  has a slope of 1
2

, so the slope of the perpen-

dicular bisector, and therefore of the reflecting line, is 2. Now you can finish the 
first part of the problem by plugging the slope of 2 and the point 5 6,   into the 
point-slope form for the equation of a line:

y y m x x

y x

y x

y x

1 1

6 2 5

2 10 6

2 4
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That’s the equation of the reflecting line, in slope-intercept form.

To confirm that this reflecting line sends K to K  and L to L , you have to show that 
this line is the perpendicular bisector of KK  and LL . To do that, you must show 
that the midpoints of KK  and LL  lie on the line and that the slopes of KK  and LL  

are both 1
2

 (the opposite reciprocal of the slope of the reflecting line, y x2 4). 

First, here’s the midpoint of KK :

Midpoint  

 

KK
2 14

2
15 9

2

8 12

,

,

Plug these coordinates into the equation y x2 4 to see whether they work. 
Because 12 2 8 4, the midpoint of KK  lies on the reflecting line. Now get the 
slope of KK :

Slope KK
9 15
14 2

6
12

1
2

This is the desired slope, so everything’s copasetic for K and K . Now compute the 
midpoint of LL :

Midpoint  

 

LL
5 9

2
11 9

2

7 10

,

,

Check that these coordinates work when you plug them into the equation of the 
reflecting line, y x2 4. Because 10 2 7 4, the midpoint of LL  is on the line. 
Finally, find the slope of LL :

Slope LL
9 11
9 5

2
4

1
2

This checks. You’re done.

Not Getting Lost in Translations
A translation — probably the simplest type of transformation — is a transforma-
tion in which a figure just slides straight to a new location without any tilting or 
turning. It shouldn’t be hard to see that a translation doesn’t change a figure’s 
orientation. See Figure 19-4.
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A translation equals two reflections
It may seem a bit surprising, but instead of sliding a figure to a new location, you 
can achieve the same end result by reflecting the figure over one line and then 
over a second line.

You can see how this works by doing the following: Take a blank piece of paper 
and tear off a little piece of its lower, right-hand corner. Place the sheet of paper 
in front of you on a desk or table. Now flip the paper to the right over its right 
edge — you know, so that its right edge doesn’t move. You then see the back side 
of the paper, and the torn-off corner is at the lower, left-hand corner. Finally, flip 
the paper over to the right again. Now, after the two flips, or two reflections, you 
see the paper just as it looked originally, except that now it’s been slid, or trans-
lated, to the right.

Translation line and translation distance: In a translation, the translation line is 
any line that connects a pre-image point of a figure to its corresponding image 
point; the translation line shows you the direction of the translation. The transla-
tion distance is the distance from any pre-image point to its corresponding image 
point.

A translation equals two reflections: A translation of a given distance along a 
translation line is equivalent to two reflections over parallel lines that

 » Are perpendicular to the translation line

 » Are separated by a distance equal to half the translation distance

Note: The two parallel reflecting lines, l1 and l2, can be located anywhere along 
the translation line as long as 1) they are separated by half the translation dis-
tance and 2) the direction from l1 to l2 is the same as the direction from the 
pre-image to the image.

Is that theorem a mouthful or what? Instead of puzzling over the theorem, take a 
look at Figure 19-5 to see how reflecting lines work in a translation.

FIGURE 19-4:  
A trapezoid 

before and after 
a translation. 

© John Wiley & Sons, Inc.
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Here are a few points about Figure 19-5. You can see that the translation distance 
(the distance from Z to Z ) is 20; that the distance between the reflecting lines, l1 
and l2, is half of that, or 10; and that reflecting lines l1 and l2 are perpendicular to 
the translation line, ZZ

� ���
.

I chose to put the two reflecting lines between the pre-image and the image 
because that’s the easiest way to see how they work. But the reflecting lines don’t 
have to be placed there. To give you an idea of another possible placement for the 
two reflecting lines, imagine grabbing l1 and l2 as a single unit and moving them 
to the right in the direction of the translation line, ZZ

� ���
, till they were both out past 

X Y Z . With this new placement, you’d flip the pre-image, XYZ , first over l1 
(flipping it up and to the right, beyond l2), and then second, you’d reflect it over 
l2, back down and to the left. The final result would be X Y Z  in the very same 
place that you see it in Figure 19-5.

Finding the elements of a translation
The best way to understand the translation theorem is by looking at an example 
problem. The next problem shows you how to find a translation line, the transla-
tion distance, and a pair of reflecting lines.

FIGURE 19-5:  
After flipping over 

two reflecting 
lines, XYZ  

moves to 
X Y Z . 

© John Wiley & Sons, Inc.
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In the following figure, pre-image triangle PQR  has been slid down and to the 
right to image triangle P Q R .

Given: The coordinates
of    and 
as shown

Find:  Th

P P Q, , , R

1. ee coordinates
of  and 

2. The translation
distance

3. The 

Q R

eequation of
a translation line

4. The equations of
two differrent pairs
of reflecting lines     

© John Wiley & Sons, Inc.

1. Find the coordinates of Q  and R.

From P 7 6,   to P  3 4,  , you go 10 to the right and 2 down. In a transla-
tion, every pre-image point moves the same way to its image point, so to find 
Q , just begin at Q, which is at 5 10,  , and go 10 to the right and 2 down. 
That brings you to 5 8,  , the coordinates of Q .

To get the coordinates of R, you start at R  and go backward (10 left and 2 up). 
That gives you 2 6,   for the coordinates of R.

2. Find the translation distance.

The translation distance is the distance between any pre-image point and its 
image point, such as P and P'. Use the distance formula:

Distance

Distance  to 

x x y y

P P

2 1
2

2 1
2

2 2
3 7 4 6

10 2

104 2 26 10 2

2 2

.  units

This answer tells you that each pre-image point goes a distance of 10.2 units to 
its image point.

3. Find the equation of a translation line.

For a translation line, you can use any line that connects a point on PQR  with 
its image point on P Q R . The line connecting P and P  works as well as any 
other translation line, so work out the equation of PP

� ���
.
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To use the point-slope form for the equation of PP
� ���

, you need a point (you 
have two, P and P , so take your pick) and the slope of the line. The slope 
formula gives you — what else? — the slope:

Slope PP
� ���� 4 6

3 7
2

10
1
5

Now plug this slope and the coordinates of P  into the point-slope form  
(P would work just as well, but I like to avoid using negative numbers):

y y m x x

y x

1 1

4 1
5

3

If you feel like it, you can put this into slope-intercept form with some very 
simple algebra:

y x1
5

23
5

That’s the equation of a translation line. Triangle PQR can slide down along this 
line to P Q R .

4. Find the equations of two different pairs of reflecting lines.

The translation theorem tells you that two reflecting lines that achieve a 
translation must be perpendicular to the translation line and separated by half 
the translation distance. There are an infinite number of such pairs of lines. 
Here’s an easy way to come up with one such pair.

Perpendicular lines have slopes that are opposite reciprocals of each other. In 
part 3 of this problem, you find that PP

� ���
 has a slope of 1

5
; thus, because the 

reflecting lines are perpendicular to PP
� ���

, their slopes must be the opposite 
reciprocal of 1

5
, which is 5.

For the first reflecting line, you can use the line with a slope of 5 that goes 
through P at 7 6,  . Use the point-slope form and simplify:

y x

y x

6 5 7

5 41

Then, because the translation distance equals the length of PP , the distance 
from P to the midpoint of PP  is half the translation distance — the desired 
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distance between reflecting lines. So run your second reflecting line through 
the midpoint of PP . First find the midpoint:

Midpoint   PP
7 3
2

6 4
2

2 5, ,

The second reflecting line, which is parallel to the first, also has a slope of 5. 
Plug your numbers into the point-slope form and simplify:

y x

y x

y x

5 5 2

5 5 10

5 15

So you’ve got your two reflecting lines. If you reflect PQR  over the line 
y x5 41 and then reflect it over y x5 15  (it must be in that order), 
PQR  will land — point for point — on top of P Q R .

After you know one pair of reflecting lines, you can effortlessly produce as 
many of these pairs as you want. All reflecting lines will have the same slope, 
and in each pair of lines, their y-intercepts will be the same distance apart.

In this problem, all reflecting lines have a slope of 5, and each pair must have 
y-intercepts that — like y x5 41 and y x5 15 — are 26 units apart. For 
example, the following pairs of reflecting lines would also achieve the desired 
translation:

y x y x

y x y x

5 27 5 1

5 1 000 026 5 1

   and      or

   and   

,

, , ,0000 000,

Turning the Tables with Rotations
A rotation is what you’d expect — it’s a transformation in which the pre-image 
figure rotates or spins to the location of the image figure. With all rotations, 
there’s a single fixed point — called the center of rotation — around which every-
thing else rotates. This point can be inside the figure, in which case the figure 
stays where it is and just spins. Or the point can be outside the figure, in which 
case the figure moves along a circular arc (like an orbit) around the center of rota-
tion. The amount of turning is called the rotation angle.

In this section, you see that a rotation, just like a translation, is the equivalent of 
two reflections. Then you find out how to find the center of rotation.
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A rotation equals two reflections
You can achieve a rotation with two reflections. The way this works is a bit tricky 
to explain (and the mumbo-jumbo in the following theorem might not help 
much), so check out Figure 19-6 to get a better handle on this idea.

A rotation equals two reflections: A rotation is equivalent to two reflections over 
lines that

 » Pass through the center of rotation

 » Form an angle half the measure of the rotation angle

In Figure 19-6, you can see that pre-image RST  has been rotated counterclock-
wise 70  to image R S T . This rotation can be produced by first reflecting RST  
over line l1 and then reflecting it again over l2. The angle formed by l1 and l2, 35 , is 
half of the angle of rotation.

Finding the center of rotation and the 
equations of two reflecting lines
Just as in the previous section on translations, the easiest way to understand 
the rotation theorem is by doing a problem: In the following figure, pre-image 
triangle ABC  has been rotated to create image triangle A B C .

FIGURE 19-6:  
Two reflections 

make a rotation. 
© John Wiley & Sons, Inc.
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Find:  The center of
rotation

 Two reflecting
lines that w

1

2

.

.
oould

achieve the same
result as the rotation    

© John Wiley & Sons, Inc.

1. Find the center of rotation.

I have a nifty method for locating the center of rotation. Here’s how it works. 
Take the three segments that connect pre-image points to their image points 
(in this case, AA , BB , and CC ). In all rotations, the center of rotation lies at 
the intersection of the perpendicular bisectors of such segments (it’d get too 
involved to explain why, so just take my word for it). Because the three 
perpendicular bisectors meet at the same point, you need only two of them to 
find the point of intersection. Any two will work, so find the perpendicular 
bisectors of AA  and BB ; then you can set their equations equal to each other 
to find where they intersect.

First get the midpoint of AA :

Midpoint   AA

10 6
2

33 39
2

2 3, ,

Then find the slope of AA :

Slope AA

39 33
6 10

72
16

9
2

The slope of the perpendicular bisector of AA  is the opposite reciprocal of 9
2

, 

namely 2
9

. The point-slope form for the perpendicular bisector is thus

y x

y x

3 2
9

2

2
9

23
9
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Go through the same process to get the perpendicular bisector of BB :

Midpoint   BB

10 15
2

18 27
2

5
2

9
2

, ,

Slope BB

27 18
15 10

45
25

9
5

The slope of the perpendicular bisector of BB  is the opposite reciprocal of 9
5

, 

which is 5
9

. The equation of the perpendicular bisector is thus

y x

y x

9
2

5
9

5
2

5
9

53
9

Now, to find where the two perpendicular bisectors intersect, set the right 
sides of their equations equal to each other and solve for x:

2
9

23
9

5
9

53
9

3
9

30
9

x x

x

Multiply both sides by 9 to get rid of the fractions; then divide:

3 30

10

x

x

Plug –10 back into either equation to get y:

y x2
9

23
9

2
9

10 23
9

1
3

You’ve done it. The center of rotation is 10 1
3

,  . Give this point a name — 
how about point Z?

The following figure shows point Z, AZA , and a little counterclockwise arrow 
that indicates the rotational motion that would move ABC  to A B C . If you 
hold Z where it is and rotate this book counterclockwise, ABC  will spin to 
where A B C  is now.
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2. Find two reflecting lines that achieve the same result as the rotation.

The rotation theorem tells you that two reflecting lines will achieve this rotation 
if they go through the center of rotation and form an angle that’s half the 
measure of the rotation angle (as shown earlier in Figure 19-6). An infinite 
number of pairs of reflecting lines satisfy these conditions, but the following is 
an easy way to find one such pair.

In this problem, ABC  has been rotated counterclockwise; the amount of rota-
tion is 143 , the measure of AZA . (The figure shows the 143  angle, but don’t 
worry about how I calculated it. To compute the angle, you need some trig 
that’s beyond the scope of this book; you won’t be asked to do it.) You want an 
angle half this big for the angle between the two reflecting lines. One way to do 
this is to cut AZA  in half with its angle bisector. Then you can use the 
half-angle that goes from side ZA

� ���
 to the angle bisector.

So designate ZA
� ���

 as the first reflecting line and find its equation by determining 
its slope and plugging the slope and the coordinates of Z or A into the point-
slope form for the equation of a line. If you do the math and then clean things 

up, you should get y x5
3

49
3

.

Again, with ZA
� ���

 as the first reflecting line, the second reflecting line will be the 
angle bisector of AZA . But guess what — you already know this angle 
bisector because it’s one and the same as the perpendicular bisector of AA , 
which you figured out in part 1: y x2

9
23
9

. (By the way, if you’d used, say, 
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BZB  instead of AZA , you would’ve used the perpendicular bisector of BB  
as the angle bisector of BZB .)

So if you reflect ABC  over ZA
� ���

, y x5
3

49
3

, and then over y x2
9

23
9

, 

it’ll land precisely where A B C  is. And thus, these two reflections achieve the 
same result as the counterclockwise rotation about point Z.

Third Time’s the Charm: Stepping  
Out with Glide Reflections

A glide reflection is just what it sounds like: You glide a figure (that’s just another 
way of saying slide or translate) and then reflect it over a reflecting line. Or you can 
reflect the figure first and then slide it; the result is the same either way. A glide 
reflection is also called a walk because it looks like the motion of two feet. See 
Figure 19-7.

A glide reflection is, in a sense, the most complicated of the four types of isometries 
because it’s the composition of two other isometries: a reflection and a translation. 
If you have a pre-image and an image like the two feet in Figure 19-7, it’s impos-
sible to move the pre-image to the image with one simple reflection, one transla-
tion, or one rotation (try it with Figure 19-7). The only way to get from the pre-image 
to the image is with a combination of one reflection and one translation.

A glide reflection equals three reflections
A glide reflection is the combination of a reflection and a translation. And because 
you can produce the translation part with two reflections (see the earlier “Not 
Getting Lost in Translations” section), you can achieve a glide reflection with 
three reflections.

FIGURE 19-7:  
The footprints are 

glide reflections 
of each other. 

© John Wiley & Sons, Inc.
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You can see in the previous sections that some images are just one reflection away 
from their pre-images; other images (in translation and rotation problems) are 
two reflections away. And now you see that glide reflection images are three 
reflections away from their pre-images. I find it interesting that this covers all 
possibilities. In other words, every image — no matter where it is in the coordi-
nate system and no matter how it’s spun around or flipped over — is either one, 
two, or three reflections away from its pre-image. Pretty cool, eh?

Finding the main reflecting line
The following theorem tells you about the location of the main reflecting line in a 
glide reflection, and the subsequent problem shows you, step by step, how to find 
the main reflecting line’s equation.

The main reflecting line of a glide reflection: In a glide reflection, the midpoints 
of all segments that connect pre-image points with their image points lie on the 
main reflecting line.

Ready for a glide reflection problem? I do the reflection first and then the transla-
tion, but you can do them in either order.

The following figure shows a pre-image parallelogram ABCD and the image 
 parallelogram A B C D  that resulted from a glide reflection. Find the main reflect-
ing line.

© John Wiley & Sons, Inc.
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The main reflecting line in a glide reflection contains the midpoints of all seg-
ments that join pre-image points with their image points (such as CC ). You need 
only two such midpoints to find the equation of the main reflecting line (because 

you need just two points to determine a line). The midpoints of AA  and BB  will 
do the trick:

Midpoint   

Midpoint

AA

BB

15 19
2

29 1
2

2 14, ,

3 19
2

13 21
2

8 4, ,  

Now simply find the equation of the line determined by these two points:

SlopeMain reflecting line
14 4

2 8
18
6

3

Use this slope and one of the midpoints in the point-slope form and simplify:

y x

y x

y x

4 3 8

4 3 24

3 20

That’s the main reflecting line. If you reflect parallelogram ABCD over this line, 
it’ll then be in the same orientation as parallelogram A B C D  (A to B to C to D will 
be in the clockwise direction), and ABCD will be perfectly vertical like A B C D . 
Then a simple translation in the direction of the main reflecting line will bring 
ABCD to A B C D  (see Figure 19-8).

You can achieve the translation to finish this glide reflection with two more reflec-
tions. But because I explain how to do such problems in the earlier “Not Getting 
Lost in Translations” section, I skip this so you can move on to the thrilling mate-
rial in the next chapter.
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FIGURE 19-8:  
ABCD is  

reflected over 
y x3 20 

and then slid in 
the direction of 

the line to 
A B C D . 

© John Wiley & Sons, Inc.
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IN THIS CHAPTER

Using the four-step process for 
finding loci

Looking at 2-D and 3-D loci

Copying segments, angles, and 
triangles with a compass and 
straightedge

Using constructions to divide 
segments and angles

Locating Loci and 
Constructing 
Constructions

Locus is basically just a fancy word for set. In a locus problem, your task is to 
figure out (and then draw) the geometric object that satisfies certain condi-
tions. Here’s a simple example: What’s the locus or set of all points 5 units 

from a given point? The answer is a circle because if you begin with one given 
point and then go 5 units away from that point in every direction, you get a circle 
with a radius of 5.

Constructions may be more familiar to you. Your task in construction problems is 
to use a compass and straightedge either to copy an existing figure, such as an 
angle or triangle, or to create something like a segment’s perpendicular bisector, 
an angle’s bisector, or a triangle’s altitude.

Chapter 20
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What these topics have in common is that both involve drawing sets of points that 
make up some geometric figure. With locus problems, the challenge isn’t drawing 
the shape; it’s figuring out what shape the problem calls for. With construction 
problems, it’s the other way around: You know exactly what shape you want, and 
the challenge is figuring out how to construct it.

Loci Problems: Getting in  
with the Right Set

Locus: A locus (plural: loci) is a set of points (usually some sort of geometric 
object like a line or a circle) consisting of all the points, and only the points, that 
satisfy certain given conditions.

The process of solving a locus problem can be difficult if you don’t go about it 
methodically. So in this section, I give you a four-step locus-finding method that 
should keep you from making some common mistakes (such as including too 
many or too few points in your solution). Next, I take you through several 2-D 
locus problems using this process, and then I show you how to use 2-D locus 
problems to solve related 3-D problems.

The four-step process for locus problems
Following is the handy-dandy procedure for solving locus problems I promised 
you. Don’t worry about understanding it immediately. It’ll become clear to you as 
soon as you do some problems in the subsequent sections. (Warning: Even though 
you’ll often come up empty when working through steps 2 and 3, don’t neglect to 
check them!):

1. Identify a pattern.

Sometimes the key pattern will just sort of jump out at you. If it does, you’re 
done with Step 1. If it doesn’t, find a single point that satisfies the given 
condition or conditions of the locus problem; then find a second such point; 
then, a third; and so on until you recognize a pattern.

2. Look outside the pattern for points to add.

Look outside the pattern you identified in Step 1 for additional points that 
satisfy the given condition(s).
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3. Look inside the pattern for points to exclude.

Look inside the pattern you found in Step 1 (and possibly, though much less 
likely, any pattern you may have found in Step 2) for points that fail to satisfy 
the given condition(s) despite the fact that they belong to the pattern.

4. Draw a diagram and write a description of the locus solution.

Two-dimensional locus problems
In 2-D locus problems, all the points in the locus solution lie in a plane. This is 
usually, but not always, the same plane as the given geometric object. Take a look 
at how the four-step solution method works in a few 2-D problems.

Problem one
What’s the locus of all points 3 units from a given circle whose radius is 10 units?

1. Identify a pattern.

This is likely a problem in which you can immediately picture a pattern without 
going through the one-point-at-a-time routine. When you read that you want 
all points that are 3 units from a circle, you can see that a bigger circle will do 
the trick. Figure 20-1 shows the given circle of radius 10 and the circle of radius 
13 that you’d draw for your solution.

2. Look outside the pattern for points to add.

Do you see what Step 1 leaves out? Right — it’s a smaller circle with a radius of 
7 inside the original circle (see Figure 20-2). I suppose my “missing” this second 
circle may seem a bit contrived, and granted, many people immediately see 

FIGURE 20-1:  
Points 3 units 

away from the 
original circle that 

form another 
circle. 

© John Wiley & Sons, Inc.
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that the solution should include both circles. However, people often do focus 
on one particular pattern (the biggest circle in this problem) to the exclusion of 
everything else. Their minds sort of get in a rut, and they have trouble seeing 
anything other than the first pattern or idea that they latch onto. And that’s 
why it’s so important to explicitly go through this second step of the four-step 
method.

3. Look inside the pattern for points to exclude.

All points of the 7-unit-radius and 13-unit-radius circles satisfy the given 
condition, so no points need to be excluded.

4. Draw the locus and describe it in words.

Figure 20-2 shows the locus, and the caption gives its description.

Like a walk in the park, right?

Problem two
What’s the locus of all points equidistant from two given points?

1. Identify a pattern.

Figure 20-3 shows the two given points, A and B, along with four new points 
that are each equidistant from the given points.

Do you see the pattern? You got it — it’s a vertical line that goes through the 
midpoint of the segment that connects the two given points. In other words, 
it’s that segment’s perpendicular bisector.

2. Look outside the pattern.

This time you come up empty in Step 2. Check any point not on the perpen-
dicular bisector of AB, and you see that it’s not equidistant from A and B. Thus, 
you have no points to add.

FIGURE 20-2:  
The locus of 

points 3 units 
from the given 

circle is two 
circles concentric 
with the original 

circle with radii of 
7 and 13 units. 

© John Wiley & Sons, Inc.
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3. Look inside the pattern.

Nothing noteworthy here, either. Every point on the perpendicular bisector of 
AB is, in fact, equidistant from A and B. (You may recall that this follows from 
the second equidistance theorem from Chapter 9.) Thus, no points should be 
excluded. (Repeat warning: Don’t allow yourself to get a bit lazy and skip Steps 
2 and 3!)

4. Draw the locus and describe it in words.

Figure 20-4 shows the locus, and the caption gives its description.

Now suppose problem two had been worded like this instead: What’s the locus of 
the vertices of isosceles triangles having a given segment for a base?

Look back at Figure 20-4. For the tweaked problem, AB is the base of the isosceles 
triangles. Because the vertex joining the congruent legs of an isosceles triangle is 
equidistant from the endpoints of its base (points A and B), the solution to this 
tweaked problem is identical to the solution to problem two — except, that is, 
when you get to Steps 2 and 3.

FIGURE 20-3:  
Identifying points 

that work. 
© John Wiley & Sons, Inc.

FIGURE 20-4:  
The locus of 

points equidis-
tant from two 
given points is 

the perpendicular 
bisector of the 

segment that 
joins the two 

points. 
© John Wiley & Sons, Inc.
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In Step 1 of the tweaked problem, you find the same perpendicular bisector pat-
tern, so it’s easy to fall into the trap of thinking that the perpendicular bisector is 
the final solution. But when you get to Step 2, you should realize that you have to 
add the given points A and B to your solution because, of course, they’re vertices 
of all the triangles.

And when you get to Step 3, you should notice that you have to exclude a single 
point from the locus: The midpoint of AB can’t be part of the solution because it’s 
on the same line as A and B, and you can’t use three collinear points for the three 
vertices of a triangle. The locus for this tweaked problem is, therefore, the per-
pendicular bisector of AB, plus points A and B, minus the midpoint of AB.

If a point needs to be excluded, there must be something special or unusual about 
it. When looking for points that may need to be excluded from a locus solution, 
check points in special locations such as

 » The given points

 » Midpoints and endpoints of segments

 » Points of tangency on a circle

Note how this tip applies to the preceding problem: The point you had to exclude 
in Step 3 is the midpoint of a segment.

Although the points you had to add (the given points) are also listed in the tip, this 
situation is unusual. Most of the time, points that must be added in Step 2 are not 
the sorts of special, isolated points in this list. Instead, they typically form their 
own pattern beyond the first pattern you spotted (you see this in problem one, 
where I “missed” the inner circle).

Problem three
Given points P and R, what’s the locus of points Q such that PQR is a right angle?

1. Identify a pattern.

This pattern may be a bit tricky to find, but if you start with points P and R and 
try to find a few points Q that make a right angle with P and R, you’ll probably 
begin to see a pattern emerging. See Figure 20-5.

See the pattern? The Q points are beginning to form a circle with diameter PR 
(see Figure 20-6). This makes sense if you think about the inscribed-angle 
theorem from Chapter 15: In a circle with PR as its diameter, semicircular arc 
PR would be 180 , so all inscribed angles PQR would be one-half of that, or 90 .
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2. Look outside the pattern.

Nope, nothing to add here. Any point Q inside the circle you identified in Step 1 
creates an obtuse angle with P and R (or a straight angle), and any point Q 
outside the circle creates an acute angle with P and R (or a zero degree angle). All 
the right angles are on the circle. (The location of the three types of angles — 
acute, right, obtuse — follows from the angle-circle theorems from Chapter 15.)

3. Look inside the pattern.

Bingo. See what points have to be excluded? It’s the given points P and R. If Q 
is at the location of either given point, all you have left is a segment (QR or PQ), 
so you no longer have the three distinct points you need to make an angle.

4. Draw the locus and describe it in words.

Figure 20-6 shows the locus, and the caption gives its description. Note the 
hollow dots at P and R, which indicate that those points aren’t part of the 
solution.

FIGURE 20-5:  
Identifying “Q” 

points that form 
right angles with 

P and R. 
© John Wiley & Sons, Inc.

FIGURE 20-6:  
Given points P 

and R, the locus 
of points Q such 
that PQR  is a 

right angle is a 
circle with 

diameter PR, 
minus points P 

and R. 
© John Wiley & Sons, Inc.
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Three-dimensional locus problems
With 3-D locus problems, you have to determine the locus of all points in 3-D 
space that satisfy the given conditions of the locus. In this short section, instead of 
doing 3-D problems from scratch, I just want to discuss how 3-D locus problems 
compare with 2-D problems.

You can use the four-step locus method to solve 3-D locus problems directly, but 
if this seems too difficult or if you get stuck, try solving the 2-D version of the 
problem first. The 2-D solution often points the way to the 3-D solution. Here’s 
the connection:

 » The 3-D solution can often (but not always) be obtained from the 2-D solution 
by rotating the 2-D solution about some line. (Often this line passes through 
some or all of the given points.)

 » The solution to the 2-D version of a 3-D locus problem is always a slice of the 
solution to the 3-D problem (that’s a slice in the sense that a circle is a slice of 
a sphere or, in other words, that a circle is the intersection of a plane and a 
sphere).

To get a handle on this 3-D tip, take a look at the 3-D versions of the 2-D locus 
problems from the previous section (I have a reason for giving them to you out of 
order).

The 3-D version of problem two
Look back at Figure 20-4, which shows the solution to problem two. Consider the 
same locus question, but make it a 3-D problem: What’s the locus of points in 3-D 
space equidistant from two given points?

The answer is a plane (instead of a line) that’s the perpendicular bisector plane of 
the segment joining the two points. Note a couple of things about this solution:

 » You can obtain the 3-D solution (the perpendicular bisector plane) by rotating 
the 2-D solution (the perpendicular bisector line) about AB

� ���
, the line that 

passes through the two given points.

 » The 2-D solution is a slice of the 3-D solution. It might seem odd to call the 2-D 
solution a slice because it’s only a line, but if you slice or cut the 3-D solution (a 
plane) with another plane, you get a line.

Now consider the tweaked version of problem two. Its solution, you may recall, is 
the same as the solution to problem two (a perpendicular bisector), but with two 
points added and a single point omitted. This 2-D solution can help you visualize 
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the solution to the related 3-D problem. The solution to the 3-D version is the 2-D 
solution rotated about AB

� ���
, namely the perpendicular bisector plane, plus points A 

and B, minus the midpoint of AB.

The 3-D version of problem three
The 3-D version of problem three (Given points P and R, what’s the locus of points 
Q in space such that PQR is a right angle?) is another problem where you can 
obtain the 3-D solution from the 2-D solution by doing a rotation. Figure 20-6, 
shown earlier, shows and describes the 2-D solution: It’s a circle minus the end-
points of diameter PR. If you rotate this 2-D solution about PR

� ���
, you obtain the 3-D 

solution: a sphere with diameter PR, minus points P and R.

The 3-D version of problem one
Figure 20-2, shown earlier, shows and describes the solution to problem one: two 
concentric circles. But unlike the other 3-D problems in this section, the solution 
to the 3-D version of this problem (What’s the locus of all points in space that are 
3 units from a given circle whose radius is 10 units?) cannot be obtained by rotat-
ing the 2-D solution. However, the 2-D solution can still help you visualize the 
3-D solution because the 2-D solution is a slice of the 3-D solution. Can you pic-
ture the 3-D solution? It’s a donut shape (a torus in mathspeak) that’s 26 units 
wide and that has a 14-unit-wide “donut hole.” Imagine slicing a donut in half in 
a bagel slicer. The flat face of either half donut would have a small circle where the 
donut hole was and a big circle around the outer edge, right? Look back at the two 
bold circles in Figure 20-2. They represent the two circles you’d see on the half 
donut. (Time for a break: How ’bout a cream-filled or a cruller?)

Drawing with the Bare Essentials: 
Constructions

Geometers since the ancient Greeks have enjoyed the challenge of seeing what 
geometric objects they could draw using only a compass and a straightedge. A 
compass, of course, is that thing with a sharp point and an attached pencil that you 
use to draw circles. A straightedge is just like a ruler but without marks on it. The 
whole idea behind these constructions is to draw geometric figures from scratch or 
to copy other figures using these two simplest-possible drawing tools and noth-
ing else. (By the way, you can use a ruler instead of a straightedge when you’re 
doing constructions, but just remember that you’re not allowed to measure any 
lengths with it.)
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In this section, I go through methods for doing nine basic constructions. After 
mastering these nine, you can use the methods on more-advanced problems.

Note: When I want you to draw an arc, I use a special notation. In parentheses, I 
first name the point where you should place the point of your compass (this is the 
center of the arc); then I indicate how wide you should open the compass (this is 
the radius of the arc). The radius can be given as the length of a specific segment 
or with a single letter. So, for instance, when I want you to draw an arc that has a 
center at M and a radius of length MN, I write “arc M MN,  ”; or when I’m talking 
about an arc with a center at T and a radius of r, I write “arc T r,  .”

Three copying methods
In this section, you discover the techniques for copying a segment, an angle, and 
a triangle.

Copying a segment
The key to copying a given segment is to open your compass to the length of the 
segment; then, using that amount of opening, you can mark off another segment 
of the same length.

Given:

Construct: A segment  congruent to 

MN

PQ MN

Here’s the solution (see Figure 20-7):

1. Using your straightedge, draw a working line, l, with a point P any-
where on it.

2. Put your compass point on point M and open it to the length of MN .

The best way to make sure you’ve opened it to just the right amount is to draw 
a little arc that passes through N. In other words, draw arc M MN,  .

3. Being careful not to change the amount of the compass’s opening from Step 2, 
put the compass point on point P and construct arc P MN,   intersecting  
line l.

You call this point of intersection point Q, and you’re done.
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Copying an angle
The basic idea behind copying a given angle is to use your compass to sort of mea-
sure how wide the angle is open; then you create another angle with the same 
amount of opening.

Given:

Construct: An  congruent to 

A

B A

Refer to Figure 20-8 as you go through these steps:

1. Draw a working line, l, with point B on it.

2. Open your compass to any radius r, and construct arc A r,   intersecting the 
two sides of A at points S and T.

3. Construct arc B r,   intersecting line l at some point V.

4. Construct arc S ST,  .

5. Construct arc V ST,   intersecting arc B r,   at point W.

6. Draw BW
� ����

 and you’re done.

Copying a triangle
The idea here is to use your compass to “measure” the lengths of the three sides 
of the given triangle and then make another triangle with sides congruent to the 
sides of the original triangle. (The fact that this method works is related to the SSS 
method of proving triangles congruent; see Chapter 9.)

Given:

Construct:

DEF

JKL DEF

FIGURE 20-7:  
Copying a 
segment. 

© John Wiley & Sons, Inc.
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As you work through these steps, refer to Figure 20-9:

1. Draw a working line, l, with a point J on it.

2. Use the earlier “Copying a segment” method to construct segment JK  on 
line l that’s congruent to DE .

3. Construct

a. Arc D DF,  

b. Arc J DF,  

4. Construct

a. Arc E EF,  

b. Arc K EF,   intersecting arc J DF,   at point L

5. Draw JL and KL and you’re done.

FIGURE 20-8:  
Copying an angle. 

© John Wiley & Sons, Inc.
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Bisecting angles and segments
The next couple of constructions show you how to divide angles and segments 
exactly in half.

Bisecting an angle
To bisect an angle, you use your compass to locate a point that lies on the angle 
bisector; then you just use your straightedge to connect that point to the angle’s 
vertex. Let’s do it.

Given:

Construct: , the bisector of 

K

KZ K
� ���

Check out Figure 20-10 as you work through this construction:

1. Open your compass to any radius r, and construct arc K r,   intersecting 
the two sides of K  at A and B.

2. Use any radius s to construct arc A s,   and arc B s,   that intersect each 
other at point Z.

Note that you must choose a radius s that’s long enough for the two arcs to 
intersect.

3. Draw KZ
� ���

 and you’re done.

FIGURE 20-9:  
Copying a 

triangle. 
© John Wiley & Sons, Inc.
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Constructing the perpendicular  
bisector of a segment
To construct a perpendicular bisector of a segment, you use your compass to 
locate two points that are each equidistant from the segment’s endpoints and 
then finish with your straightedge. (The method of this construction is very 
closely related to the first equidistance theorem from Chapter 9.)

Given:

Construct:  the perpedicular bisector of 

CD

GH CD
� ���

,

Figure 20-11 illustrates this construction process:

1. Open your compass to any radius r that’s more than half the length of CD, 
and construct arc C r,  .

2. Construct arc D r,   intersecting arc C r,   at points G and H.

3. Draw GH
� ����

.

You’re done: GH
� ���

 is the perpendicular bisector of CD.

FIGURE 20-10:  
Bisecting an 

angle. 
© John Wiley & Sons, Inc.

UP FOR A CHALLENGE? CONSTRUCT  
THE TRISECTORS OF AN ANGLE
In the text, you see the relatively easy method for bisecting an angle — cutting an angle 
into two equal parts. Now, it might not seem that dividing an angle into three equal 
parts would be much harder. But in fact, it’s not just difficult — it’s impossible. For over 
2,000 years, mathematicians tried to find a compass-and-straightedge method for tri-
secting an angle — to no avail. Then, in 1837, Pierre Wantzel, using the very esoteric 
mathematics of abstract algebra, proved that such a construction is mathematically 
impossible. Despite this airtight proof, quixotic (foolhardy?) amateur mathematicians 
continue trying, to this day, to discover a trisection method.
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Two perpendicular line constructions
In this section, I give you — at no extra charge — two more methods for con-
structing perpendicular lines under different given conditions.

Constructing a line perpendicular to a given line 
through a point on the given line
This perpendicular line construction method is closely related to the method in 
the preceding section. And like the previous method, this method uses concepts 
from the first equidistance theorem. The only difference here is that this time, you 
don’t care about bisecting a segment; you care only about drawing a perpendicular 
line through a point on the given line.

Given:  and point  on 

Construct:  such th

EF W EF

WZ

� ��� � ���

� ���
aat WZ EF
� ��� � ���

As you work through this construction, take a look at Figure 20-12:

1. Using any radius r, construct arc W r,   that intersects EF
� ���

 at X and Y.

2. Using any radius s that’s greater than r, construct arc X s,   and arc Y s,   
intersecting each other at point Z.

3. Draw WZ
� ����

.

That’s it; WZ
� ���

 is perpendicular to EF
� ���

 at point W.

FIGURE 20-11:  
Constructing a 
perpendicular 

bisector. 
© John Wiley & Sons, Inc.

FIGURE 20-12:  
Constructing a 
perpendicular 
line through a 

point on a line. 
© John Wiley & Sons, Inc.
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Constructing a line perpendicular to a given line 
through a point not on the given line
For a challenge, read the following given and construct and then see whether you 
can do this construction before reading the solution.

Given:  and point  not on 

Construct:  suc

AZ J AZ

JM

� ��� � ���

� ���
hh that JM AZ

� ��� � ���

Figure 20-13 can help guide you through this construction:

1. Open your compass to a radius r (r must be greater than the distance 
from J to AZ

� ���
), and construct arc J r,   intersecting AZ

� ���
 at K and L.

2. Leaving your compass open to radius r (other radii would also work), 
 construct arc K r,   and arc L r,   — on the side of AZ

� ���
 that’s opposite 

point J — intersecting each other at point M.

3. Draw JM
� ����

, and that’s a wrap.

Constructing parallel lines and using  
them to divide segments
For the final two constructions, you find out how to construct a line parallel to a 
given line; then you use that technique to divide a segment into any number of 
equal parts.

Constructing a line parallel to a given line through 
a point not on the given line
This construction method is based on one of the lines-cut-by-a-transversal the-
orems from Chapter 10 (if corresponding angles are congruent, then lines are parallel).

Given:  and point  not on 

Construct:  s

UW X UW

XZ

� ���� � ����

� ���
uuch that XZ UW

� ���
�
� ����

FIGURE 20-13:  
Constructing a 
perpendicular 

line through  
a point not  

on a line. 
© John Wiley & Sons, Inc.
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As you try this construction, follow the steps shown in Figure 20-14:

1. Through X, draw a line l that intersects UW
� ����

 at some point V.

2. Using the earlier “Copying an angle” method, construct YXZ XVW .

I’ve labeled the four arcs you draw in order: 2a, 2b, 2c, and 2d.

3. Draw XZ
� ���

, which is parallel to UW
� ����

, so that does it.

Dividing a segment into any number  
of equal subdivisions
The following example shows you how to divide a segment into three equal parts, 
but the method works for dividing a segment into any number of equal parts. 
Because this construction technique involves drawing parallel lines, it’s related to 
the same theorem referred to in the preceding construction: if corresponding angles 
are congruent, then lines are parallel. This technique also makes use of the side-
splitter theorem from Chapter 13.

Given:

Construct: The two trisection points of 

GH

GH

Check out Figure 20-15 for this construction:

1. Draw any line l through point G.

2. Open your compass to any radius r, and construct arc G r,   intersecting 
line l at a point you’ll call X.

3. Construct arc X r,   intersecting l at a point Y.

4. Construct arc Y r,   intersecting l at a point Z.

FIGURE 20-14:  
Constructing a 

line parallel to a 
given line. 

© John Wiley & Sons, Inc.
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5. Draw ZH
� ����

.

6. Using the preceding parallel-line construction method, construct lines 
through Y and X parallel to ZH

� ����
.

These two lines will intersect GH  at its trisection points. That does it for this 
problem.

And as for this book (except for a couple of minor chapters), a-thaa-a-thaa-a- 
thaa-a-thaa-a-that’s all, folks!

FIGURE 20-15:  
Dividing a 

segment into 
equal parts. 

© John Wiley & Sons, Inc.
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Definitions, postulates, and theorems that you must 
learn.

Real-world applications of geometry.
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IN THIS CHAPTER

Segment and angle postulates 
and theorems

Parallel-line theorems

A circle theorem

Triangle definitions, postulates, 
and theorems

Ten Things to Use as 
Reasons in Geometry 
Proofs

Here’s the top ten list of definitions, postulates, and theorems that you 
should absotively, posilutely know how to use in the reason column of 
geometry proofs. They’ll help you tackle any proof you might run across. 

Whether a particular reason is a definition, postulate, or theorem doesn’t matter 
much because you use them all in the same way.

The Reflexive Property
The reflexive property says that any segment or angle is congruent to itself. You 
often use the reflexive property, which I introduce in Chapter 9, when you’re try-
ing to prove triangles congruent or similar. Be careful to notice all shared seg-
ments and shared angles in proof diagrams. Shared segments are usually pretty 
easy to spot, but people sometimes fail to notice shared angles like the one shown 
in Figure 21-1.

Chapter 21
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Vertical Angles Are Congruent
I cover the vertical-angles-are-congruent theorem in Chapter  5. This theorem 
isn’t hard to use, as long as you spot the vertical angles. Remember — everywhere 
you see two lines that come together to make an X, you have two pairs of congru-
ent vertical angles (the ones on the top and bottom of the X, like angles 2 and 4 in 
Figure 21-1, and the ones on the left and right sides of the X, like angles 1 and 3).

The Parallel-Line Theorems
There are ten parallel-line theorems that involve a pair of parallel lines and a 
transversal (which intersects the parallel lines). See Figure 21-2. Five of the theo-
rems use parallel lines to show that angles are congruent or supplementary; the 
other five use congruent or supplementary angles to show that lines are parallel. 
Here’s the first set of theorems:

If lines are parallel, then . . .

 » Alternate interior angles, like 4 and 5, are congruent.

 » Alternate exterior angles, like 1 and 8, are congruent.

 » Corresponding angles, like 3 and 7, are congruent.

 » Same-side interior angles, like 4 and 6, are supplementary.

 » Same-side exterior angles, like 1 and 7, are supplementary.

FIGURE 21-1:  
Angle A is one of 
the vertex angles 

of both ACE  
and ADB. 

Angles 1 and 3 
are vertical 

angles, as are 
angles 2 and 4. 

© John Wiley & Sons, Inc.
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And here are the ways to prove lines parallel:

 » If alternate interior angles are congruent, then lines are parallel.

 » If alternate exterior angles are congruent, then lines are parallel.

 » If corresponding angles are congruent, then lines are parallel.

 » If same-side interior angles are supplementary, then lines are parallel.

 » If same-side exterior angles are supplementary, then lines are parallel.

The second five theorems are the reverse of the first five. I discuss parallel lines 
and transversals more fully in Chapter 10.

Two Points Determine a Line
Not much to be said here — whenever you have two points, you can draw a line 
through them. Two points determine a line because only one particular line can go 
through both points. You use this postulate in proofs whenever you need to draw 
an auxiliary line on the diagram (see Chapter 10).

All Radii of a Circle Are Congruent
Whenever you have a circle in your proof diagram, you should think about the all- 
radii-are-congruent theorem (and then mark all radii congruent) before doing 
anything else. I bet that just about every circle proof you see will use congruent 
radii somewhere in the solution. (And you’ll often have to use the theorem in the 
preceding section to draw in more radii.) I discuss this theorem in Chapter 14.

FIGURE 21-2:  
A transversal 

cutting across 
two parallel lines. 

© John Wiley & Sons, Inc.
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If Sides, Then Angles
Isosceles triangles have two congruent sides and two congruent base angles. The 
if-sides-then-angles theorem says that if two sides of a triangle are congruent, 
then the angles opposite those sides are congruent (see Figure 21-3). Do not fail to 
spot this! When you have a proof diagram with triangles in it, always check to see 
whether any triangle looks like it has two congruent sides. For more information, 
flip to Chapter 9.

If Angles, Then Sides
The if-angles-then-sides theorem says that if two angles of a triangle are con-
gruent, then the sides opposite those angles are congruent (see Figure 21-4). Yes, 
this theorem is the converse of the if-sides-then-angles theorem, so you may be 
wondering why I didn’t put this theorem in the preceding section. Well, these two 
isosceles triangle theorems are so important that each deserves its own section.

The Triangle Congruence Postulates  
and Theorems

Here are the five ways to prove triangles congruent (see Chapter 9 for details):

 » SSS (side-side-side): If the three sides of one triangle are congruent to the 
three sides of another triangle, then the triangles are congruent.

FIGURE 21-3:  
Going from 

congruent sides 
to congruent 

angles. 
© John Wiley & Sons, Inc.

FIGURE 21-4:  
Going from 

congruent angles 
to congruent 

sides. 
© John Wiley & Sons, Inc.
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 » SAS (side-angle-side): If two sides and the included angle of one triangle are 
congruent to two sides and the included angle of another triangle, then the 
triangles are congruent.

 » ASA (angle-side-angle): If two angles and the included side of one triangle 
are congruent to two angles and the included side of another triangle, then 
the triangles are congruent.

 » AAS (angle-angle-side): If two angles and a non-included side of one triangle 
are congruent to two angles and a non-included side of another triangle, then 
the triangles are congruent.

 » HLR (hypotenuse-leg-right angle): If the hypotenuse and a leg of one right 
triangle are congruent to the hypotenuse and a leg of another right triangle, 
then the triangles are congruent.

CPCTC
CPCTC stands for corresponding parts of congruent triangles are congruent. It has the 
feel of a theorem, but it’s really just the definition of congruent triangles. When 
doing a proof, after proving triangles congruent, you use CPCTC on the next line 
to show that some parts of those triangles are congruent. CPCTC makes its debut 
in Chapter 9.

The Triangle Similarity Postulates  
and Theorems

Here are the three ways to prove triangles similar — that is, to show they have the 
same shape (Chapter 13 can fill you in on the details):

 » AA (angle-angle): If two angles of one triangle are congruent to two angles of 
another triangle, then the triangles are similar.

 » SSS~ (side-side-side similar): If the ratios of the three pairs of corresponding 
sides of two triangles are equal, then the triangles are similar.

 » SAS~ (side-angle-side similar): If the ratios of two pairs of corresponding 
sides of two triangles are equal and the included angles are congruent, then 
the triangles are similar.
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IN THIS CHAPTER

Getting in touch with Greek 
mathematics

Looking at wonders of the ancient 
and modern worlds

Appreciating Earthly calculations

Checking out other real-world 
applications

Ten Cool Geometry 
Problems

This chapter is sort of a geometry version of Ripley’s Believe It or Not. I give you 
ten geometry problems involving some famous and not-so-famous histori-
cal figures (Archimedes, Tsu Chung-Chin, Christopher Columbus, 

Eratosthenes, Galileo Galilei, Buckminster Fuller, and Walter Bauersfeld), some 
everyday objects (soccer balls, crowns, and bathtubs), some great architectural 
achievements (the Golden Gate Bridge, the Parthenon, the geodesic dome, and the 
Great Pyramid), some science problems (figuring out the circumference of the 
Earth and the motion of a projectile), some geometric objects (parabolas, catenary 
curves, and truncated icosahedrons), and, lastly, the most famous number in 
mathematics, pi. So here you go — ten wonders of the geometric world.

Eureka! Archimedes’s Bathtub Revelation
Archimedes (Syracuse, Sicily; 287–212 B.C.) is widely recognized as one of the four 
or five greatest mathematicians of all time (Carl Friedrich Gauss and Isaac Newton 
are some other all-stars). He made important discoveries in mathematics, phys-
ics, engineering, military tactics, and . . . headwear?

Chapter 22
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The king of Syracuse, a colony of ancient Greece, was worried that a goldsmith 
had cheated him. The king had given the goldsmith some gold to make a crown, 
but he thought that the goldsmith had kept some of the gold for himself, replaced 
it with less-expensive silver, and made the crown out of the mixture. The king 
couldn’t prove it, though — at least not until Archimedes came along.

Archimedes talked to the king about the problem, but he was stumped until he sat 
in a bathtub one day. As he sat down, the water overflowed out of the tub. “Eureka!” 
shouted Archimedes (that’s “I’ve found it!” in Greek). At that instant, he realized 
that the volume of water he displaced was equal to the volume of his body, and 
that gave him the key to solving the problem. He got so excited that he leapt from 
the bathtub and ran out into the street half naked.

What Archimedes figured out was that if the king’s crown were pure gold, it would 
displace the same volume of water as a lump of pure gold with the same weight as 
the crown. But when Archimedes and the king tested the crown, it displaced more 
water than the lump of gold. This meant that the crown was made of more mate-
rial than the lump of gold, and it was therefore less dense. The goldsmith had 
cheated by mixing in some silver, a metal lighter than gold. Case solved. Archime-
des was rewarded handsomely, and the goldsmith lost his head — kerplunk!

Determining Pi
Pi ( ) — the ratio of a circle’s circumference to its diameter — begins with 
3.14159265.  .  . and goes on forever from there. (There’s a story about courting 
mathematicians who would go for long walks and recite hundreds of digits of pi to 
each other, but I wouldn’t recommend this approach unless you’re in love with a 
math geek.)

Archimedes, of bathtub fame (see the preceding section), was the first one 
(or  perhaps I should say the first one we know of) to make a mathematical esti-
mate of π. His method was to use two regular 96-sided polygons: one inscribed 
inside a circle (which was, of course, slightly smaller than the circle) and the other 
circumscribed around the circle (which was slightly larger than the circle). The 
measure of the circle’s circumference was thus somewhere between the perime-
ters of the small and large 96-gons. With this technique, Archimedes managed to 
figure out that  was between 3.140 and 3.142. Not too shabby.

Although Archimedes’s calculation was pretty accurate, the Chinese overtook him 
not too long after. By the fifth century A.D., Tsu Chung-Chin discovered a much 

more accurate approximation of : the fraction 355
113

, which equals about 3.1415929. 

This approximation is within 0.00001 percent of !
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The Golden Ratio
Here’s another famous geometry problem with a connection to ancient Greece. 
(When it came to mathematics, physics, astronomy, philosophy, drama, and the 
like, those ancient Greeks sure did kick some serious butt.) The Greeks used a 

number called the golden ratio, or phi ( ), which equals 5 1
2

 or approximately 

1.618, in many of their architectural designs. The Parthenon on the Acropolis in 
Athens is an example. The ratio of its width to its height is : 1. See Figure 22-1.

The golden rectangle is a rectangle with sides in the ratio of : 1. This rectangle is 
special because when you divide it into a square and a rectangle, the new, smaller 
rectangle also has sides in the ratio of : 1, so it’s similar to the original rectangle 
(which means that they’re the same shape; see Chapter 14). Then you can divide 
the smaller rectangle into a square and a rectangle, and then you can divide the 
next rectangle, and so on. See Figure 22-2. When you connect the corresponding 
corners of each similar rectangle, you get a spiral that happens to be the same 
shape as the spiraling shell of the nautilus — amazing!

FIGURE 22-1:  
The Parthenon, 
built in the fifth 

century B.C., 
features the 
golden ratio. 

© John Wiley & Sons, Inc.

FIGURE 22-2:  
The spirals of the 
golden rectangle 
and the nautilus. 

© John Wiley & Sons, Inc.
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The Circumference of the Earth
Contrary to popular belief, Christopher Columbus didn’t discover that the Earth is 
round. Eratosthenes (276–194 B.C.) made that discovery about 1,700 years before 
Columbus (perhaps others in ancient times had realized it as well). Eratosthenes 
was the head librarian in Alexandria, Egypt, the center of learning in the ancient 
world. He estimated the circumference of the Earth with the following method: He 
knew that on the summer solstice, the longest day of the year, the angle of the sun 
above Syene, Egypt, would be 0 ; in other words, the sun would be directly over-
head. So on the summer solstice, he measured the angle of the sun above Alexan-
dria by measuring the shadow cast by a pole and got a 7 2.  angle. Figure 22-3 
shows how it worked.

Eratosthenes divided 360  by 7 2.  and got 50, which told him that the distance 

between Alexandria and Syene (500 miles) was 1
50

 of the total distance around the 

Earth. So he multiplied 500 by 50 to arrive at his estimate of the Earth’s circum-
ference: 25,000 miles. This estimate was only 100 miles off the actual circumfer-
ence of 24,900 miles.

FIGURE 22-3:  
Eratosthenes’s 

method for 
measuring 
the Earth’s 

circumference. 
© John Wiley & Sons, Inc.
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The Great Pyramid of Khufu
Just 150 miles from Alexandria is the Pyramid of Khufu in Giza, Egypt. Also known 
as the Great Pyramid, it’s the largest pyramid in the world. But how big is it really? 
Well, the sides of the pyramid’s square base are each 745 feet long, and the height 

of the pyramid is 449 feet. To use the pointy-top volume formula, Volume 1
3

bh 

(see Chapter 18), you first need the area of the pyramid’s base: 745 745, or 555,025 

square feet. The volume of the pyramid, then, is 1
3

555 025 449, , or about 

83,000,000 cubic feet. That’s about 6.5 million tons of rock, and the pyramid used 
to be even bigger before the elements eroded some of it away.

Distance to the Horizon
Here’s still more evidence that Columbus didn’t discover that the Earth is round. 
Although many of the people who lived inland in the 15th century may have 
thought that the Earth was flat, no sensible person living on the coast could pos-
sibly have held this opinion. Why? Because people on the coast could see ships 
gradually drop below the horizon as the ships sailed away.

You can use a very simple formula to figure out how far the horizon is from you 
(in miles): Distance to horizon height1 5. , where height is your height (in 
feet) plus the height of whatever you happen to be standing on (a ladder, a moun-
tain, anything). If you’re standing on the shore, then you can also estimate the 
distance to the horizon by simply dividing your height in half. So if you’re 5 6  
(5.5 feet) tall, the distance to the horizon is only about 2.75 miles!

The Earth curves faster than most people think. On a small lake — say, 2.5 miles 
across — there’s a 1-foot-tall bulge in the middle of the lake due to the curvature 
of the Earth. On some larger bodies of water, if conditions are right, you can actu-
ally perceive the curvature of the Earth when this sort of bulge blocks your view of 
the opposing shore.

Projectile Motion
Projectile motion is the motion of a “thrown” object (baseball, bullet, or whatever) 
as it travels upward and outward and then is pulled back down by gravity. The 
study of projectile motion has been important throughout history, but it really got 
going in the Middle Ages, once people developed cannons, catapults, and similar 
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battle machines. Soldiers needed to know how to point their cannons so their 
 cannonballs would hit their intended targets.

Galileo Galilei (A.D. 1564–1642), who’s famous for demonstrating that the Earth 
revolves around the sun, was the first to unravel the riddle of projectile motion. 
He discovered that projectiles move in a parabolic path (like the parabola 

y x x1
4

2 , for example). Figure 22-4 shows how a cannonball (if aimed at a 

certain angle and fired at a certain velocity) would travel along this parabola.

Without air resistance, a projectile fired at a 45  angle (exactly half of a right 
angle) will travel the farthest. When you factor in air resistance, however, maxi-
mum distance is achieved with a shallower firing angle of 30  to 40 , depending on 
several technical factors.

Golden Gate Bridge
The Golden Gate Bridge was the largest suspension bridge in the world for nearly 
30 years after it was finished in 1937. In 2015, it was only number 12 (Google it to 
see where it ranks today), but it’s still an internationally recognized symbol of San 
Francisco.

The first step in building a suspension bridge is to hang very strong cables between 
a series of towers. When these cables are first hung, they hang in the shape of a 
catenary curve; this is the same kind of curve you get if you take a piece of string by 
its ends and hold it up. To finish the bridge, though, the hanging cables obviously 
have to be attached to the road part of the bridge. Well, when evenly-spaced 

FIGURE 22-4:  
Ready, aim, fire! 

Cannonballs 
follow a parabolic 

path. 
© John Wiley & Sons, Inc.
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vertical cables are used to attach the road to the main, curving cables, the shape of 
the main cables changes from a catenary curve to the slightly pointier parabola 
(see Figure 22-5). The extra weight of the road changes the shape. Pretty cool, eh?

The Geodesic Dome
A geodesic dome looks a lot like a sphere, but it’s actually formed from a very large 
number of triangular faces that are arranged in a spherical pattern. Geodesic 
domes are extremely strong structures because the interlocking triangle pattern 
distributes force evenly across the surface — actually, they’re the sturdiest type of 
structure in the world. Geodesic dome principles have also been used to create 
buckyballs, which are tiny, microscopic structures made out of carbon atoms that 
are extremely strong (some of them are harder than diamonds).

If you’ve ever heard of the geodesic dome, you’ve probably heard of Buckminster 
Fuller. Fuller patented the geodesic dome in the U.S. and went on to build many 
high-profile buildings based on the concept. However, although he seems to have 
come up with the idea on his own, Fuller wasn’t actually the first one to build a 
geodesic dome; an engineer named Walter Bauersfeld had already come up with 
the idea and built a dome in Germany.

A Soccer Ball
“Hey, you want to go outside and kick around the truncated icosahedron?” That’s 
geekspeak for a soccer ball. Seriously, though, a soccer ball is a fascinating geo-
metric shape. It begins with an icosahedron — that’s a regular polyhedron with 20 
equilateral-triangle faces. Take a look at Figure 22-6.

FIGURE 22-5:  
A catenary curve 

and the more 
familiar parabola. 

© John Wiley & Sons, Inc.
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On the surface of an icosahedron, each vertex (the pointy tips that stick out) has a 
group of five triangles around it. To get a truncated icosahedron, you cut the 
pointy tips off, and you then get a regular pentagon where each tip was. Each of 
the equilateral triangles, meanwhile, becomes a regular hexagon, because when 
you cut off the three corners of a triangle, the triangle gets three new sides.

If you don’t believe me, go get a soccer ball and count up the pentagons and hexa-
gons. You should count 12 regular pentagons and 20 regular hexagons. Play ball!

FIGURE 22-6:  
An icosahedron: 

Cut off all the 
points, and you 

get a soccer ball. 
© John Wiley & Sons, Inc.
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185–186
congruent triangles

definition of, 126
overview, 125
proofs of congruence
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corresponding angles, 157, 212, 365
corresponding sides, defined, 212
corresponding vertices, 213
CPCTC (corresponding parts of congruent 

triangles are congruent)
isosceles triangles, 138
overview, 133–136, 367

crooked line, as shortest distance between two 
points, 289–290

cross diagonal, 173–174
CSSTP (corresponding sides of similar triangles 

are proportional), 222–224
cylinder

definition of, 288
in general, 287
lateral area, 291–292

D
definitions

of five simplest geometric objects, 17
in the reason column, 49–50
of the undefinable, 21

degree, defined, 33
Descartes, René, 9, 305
determining a plane, 283
diagonals

of parallelograms, 168
in polygons, 208–209
of a rectangle, finding with the Pythagorean 

Theorem, 109
diagrams

assumptions about, 40–41
in geometry proofs, 40, 46

diameter, defined, 238
disjoint, defined, 173
distance

to the horizon, 373
translation, 329

distance formula, 310–311
dunce cap theorem, 252–253

E
Earth, circumference of, 372
Einstein, Albert, 9
endpoint, of rays, 19
equations

circle, 319–322
line, 318–319

equiangular triangles, 92
equidistance theorems, 143–146
equidistant points, perpendicular bisector 

determined by, 144–145
equilateral triangles

altitudes of, 96
area, 99, 202
in general, 42
overview, 92
30°- 60°- 90° triangle as half of, 120–122
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Eratosthenes, 372
Euclid, geometry proofs and, 14
exterior angles

alternate, 156, 157, 365
polygons, 206, 207
same-side, 157

F
figures

proving conclusions about, 40–41
warped, 41, 42

flat-top figures, 287–293
foot, defined, 279
formulas. See also specific formulas

distance, 310–311
figuring out, 16
midpoint, 311
polygon, 193–209
quadrilateral area

diagonals to find a kite’s area, 198–199
key for many quadrilateral area problems, 196
kite, 194, 195, 198–199
overview, 194
parallelogram, 195
right triangles in a parallelogram problem, 

196–197
trapezoid, 195–196
triangles and ratios in a rhombus problem, 

197–198
slope, 307–310
triangle area, 96

equilateral triangle, 99
Hero’s formula, 98

Franklin, Ben, 9

G
Galileo Galilei, 9, 374
game plan

in general, 57–58
for longer proofs, 76–77, 147–149

gaps, filling in the, in geometry proofs, 83–84
general rules about things in general, in reason 

column, 47
geodesic dome, 375–376
geometry

building blocks of
defining the undefinable, 21
definitions of five simplest geometric objects, 

17–20
horizontal and vertical lines, 22–23
overview, 17
pairs of lines, 23–25
points, 21–22

careers that use, 15
why you won’t have any trouble with, 16

geometry diagrams
assumptions about, 40–41
in geometry proofs, 40, 46

geometry proofs
analytic proofs, 314–318
auxiliary lines in, 164–166
circles, 245–247
components of, 46–47
defined, 11
definitions in the reason column, 49–50
Euclid and, 14
everyday example of, 11–12
if-then logic in, 48–52
indirect, 149–151
intermediate conclusions leading to a final 

conclusion, 13
introduction to, 10–14
longer proofs

chipping away at the problem, 79–81
filling in the gaps, 83–84
game plan, 76–77, 147–149
if-then logic, 78–79
jumping ahead and working backward,  

81–83
using all the givens, 77–78
writing out the finished proof, 84–85
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geometry proofs (continued)
overview, 45
powering through, 16
quadrilaterals, proving that you have particular

child and parent quadrilaterals, 178–179
connection between proof methods and 

properties, 178–179
definitions always work as a method of proof, 

178
kite, 189–191
methods of proof not always properties in 

reverse, 179
overview, 177
parallelogram, 180–183
properties of quadrilaterals that are reversible, 

179
rectangle, 184–186
rhombus, 184, 187
square, 184, 188–189

ten things to use as reasons in
all radii of a circle are congruent, 365
parallel-line theorems, 364–365
two points determine a line, 365
vertical angles are congruent, 364

theorems and postulates in the reason column, 
50–51

turning everyday logic into, 12
uses of knowledge of, 15–16

Geometry Workbook For Dummies, 4
givens

in general, 46
in geometry proofs, 46
using all, 62

longer proofs, 77–78
Giza, pyramids at, 9
glide reflections, 338–341
Golden Gate Bridge, 374–375
golden ratio, 371
golden rectangle, 371
Goldilocks rule, 90
Great Pyramid of Khufu, 373

H
half properties, of the kite, 174
hexagon

area, 202–203
made of right triangles, 109–111

historical highlights in the study of shapes, 9
HLR (Hypotenuse-Leg-Right angle) approach for 

right triangles, 142–143, 367
HLR postulate, 142
horizon, distance to the, 373
horizontal axis, 306
horizontal line form for the equation of a line, 319
horizontal lines, defined, 23
hypotenuse

altitude-on-hypotenuse theorem, 224–227, 272
defined, 94
Pythagorean Theorem, 108

I
icons used in this book, 3–4
icosahedron, 375–376
“if angles, then sides” theorem, 137, 281, 366
if clause, in chains of logic, 48–49
“if sides, then angles” theorem, 137, 366
if-then logic, 48–52

bubble logic for two-column proofs,  
51–52

chains of logic, 48–49
definitions, 49–50
example of non-geometry proof, 52–53
making sure you use, 78–79
overview, 48
theorems and postulates, 50–51

image, transformation, 323
incenter, 103–104
incircles, 103
included angle, defined, 128
included side, defined, 131
indirect proofs, 149–151
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infinite series of triangles, 102–103
inscribed angle, 262–264
inscribed circles (incircles), 103
interior angles

alternate, 156, 157, 165, 181, 183
polygons, 206, 207

intersecting lines, 22, 283
intersecting planes, 26
intersecting rays, 24
intersecting segments, 24
introduction to geometry, 7–16
irreducible Pythagorean triple triangles, 114–115
isometries

definition of, 323
orientation and, 325–326
reflections, 324–328

isosceles trapezoid
defined, 162
properties of, 175–176

isosceles triangle, theorems, 137–139
isosceles triangles

altitudes of, 96
definition of, 91
looking for, 138

J
jumping ahead and working backward, in 

geometry proofs, 81–83

K
Kepler, Johannes, 9
Khufu, Pyramid of, 373
kites

area, 194, 195
defined, 161
properties of, 173–174
proving that a particular quadrilateral is a, 

189–191

L
lateral area

of pointy-top figures, 294–299
of a prism or cylinder, 290–292

legs
of isosceles triangles, 91
Pythagorean Theorem, 108

like divisions, theorem, 66–69
like multiples, theorem, 66–69
line segments. See segments
line-plane perpendicularity

definition, 279
theorem, 280

lines
coplanar, 23–25
definition of, 18
equations of, 318–319
intersecting, 24
non-coplanar, 25
oblique, 24
parallel, 23–24
perpendicular, 24
reflecting, 324, 326–328
skew (non-coplanar), 25
translation, 329
two points determine a line, 365

lining up similar figures, 213–215
loci

defined, 343, 344
problems

four-step process for locus problems, 344–345
three-dimensional locus problems, 350–351
two-dimensional locus problems, 345–349

M
main diagonal, 173–174
major arc, 243
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measuring
angles, 33–35
segments, 31–32

median, definition of, 21
Mesopotamia, 9
midline theorem, 219–220
midpoint, of segments, 37
midpoint formula, 311–313
minor arc, 243
moon, size of a penny compared to, 242

N
negative slope, 309
Newton, Isaac, in general, 9
non-collinear points, 21

determining a plane, 283
non-coplanar lines, 25
non-coplanar points, 22

O
oblique lines, 24
oblique rays, 24
oblique segments, 24
obtuse angles, 27
obtuse triangles, 94, 96
octagon, area, 203–205
one-dimensional shapes, 10
ordered pairs, 306
orientation, 324–326
orthocenter, 103, 105–106

P
π (pi)

determining, 370
overview, 237

pairs of lines, 23–25
parallel lines

constructing, and using them to divide 
segments, 358

defined, 23–24

determining a plane, 283
line and plane interactions, 284
proving that lines are parallel, 157
slopes of, 310
theorems, 364–365
with two transversals, 160

parallel planes, 24, 284, 285
parallel rays, 23–24
parallel segments, 23–24
parallelograms

angles of, 168
area, 195, 196–197
defined, 162
diagonals of, 168
proof, 169
properties of, 166–169

special cases of the parallelogram (rhombus, 
rectangle, rhombus), 170–173

proving that a particular quadrilateral is a, 
180–183

sides of, 167
perimeters, similar polygons, 213
perpendicular bisector

determining a, 144–145
using a, 145–146

perpendicular line constructions, 357–358
perpendicular lines

defined, 24
slopes of, 310

perpendicular rays, 24
perpendicular segments, defined, 24
perpendicularity, radius-tangent,  

248–249
planes

defined, 279
definition of, 19–20
determining, 283
intersecting, 26
line and plane interactions, 284–285
lines perpendicular to, 279–282
overview, 25
parallel, 26
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point of intersection, 24
point of tangency, 248
points

of angles, 19
collinear, 21
coplanar, 22
definition of, 18, 21
equidistant, perpendicular bisector determined 

by, 144–145
non-collinear, 21
non-coplanar, 22

point-slope form for the equation of a line, 319, 
322, 327, 332, 333, 337, 340

pointy-top figures, 293–299
polygons. See also specific types of polygons

angles, 206–207
circles as sort of ∞-gon, 258–259
defined, 10
diagonals in, 208–209
formulas involving angles and diagonals, 205
interior and exterior angles, 206–207
similar, 212–213

positive slopes, 309
postulates

Euclid’s use of, 14
in the reason column, 50–51

power theorems, 270–275
pre-image, 323
prism

definition of, 288
in general, 287
lateral area, 290–292

problems, not giving up on, 16
projectile motion, 373–374
proofs

analytic proofs, 314–318
auxiliary lines in, 164–166
circles, 245–247
components of, 46–47
defined, 11

definitions in the reason column, 49–50
Euclid and, 14
everyday example of, 11–12
if-then logic in, 48–52
indirect, 149–151
intermediate conclusions leading to a final 

conclusion, 13
introduction to, 10–14
longer proofs

chipping away at the problem, 79–81
filling in the gaps, 83–84
game plan, 76–77, 147–149
if-then logic, 78–79
jumping ahead and working backward, 81–83
using all the givens, 77–78
writing out the finished proof, 84–85

need for, 41
overview, 45
powering through, 16
quadrilateral, proving that you have  

a particular
child and parent quadrilaterals, 178–179
connection between proof methods and 

properties, 178–179
definitions always work as a method of proof, 

178
kite, 189–191
methods of proof not always properties in 

reverse, 179
overview, 177
parallelogram, 180–183
properties of quadrilaterals that are reversible, 

179
rectangle, 184–186
rhombus, 184, 187
square, 184, 188–189

ten things to use as reasons in
all radii of a circle are congruent, 365
parallel-line theorems, 364–365
two points determine a line, 365
vertical angles are congruent, 364
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properties
of quadrilaterals

in general, 166
kite, 173–174
parallel-line properties, 156
parallelograms, 166–169
special cases of the parallelogram (rhombus, 

rectangle, rhombus), 170–173
tip for learning the properties, 166
trapezoid and isosceles trapezoid, 175–176

Substitution Property, 71–73
Transitive Property, 71–73

prove statement, in geometry proofs, 46
pyramid

definition of, 293–294
lateral area, 294

Pyramid of Khufu, 373
pyramids, at Giza, 9
Pythagoras, 9, 108
Pythagorean Theorem

altitude-on-hypotenuse theorem., 225–227
distance formula and, 310
explained, 108–110
finding the diagonal of a rectangle with, 109

Pythagorean triple triangles
defined, 113
families of, 116–118
further Pythagorean triple triangles, 115–116
irreducible, 114–115
no-brainer cases, 116–117
overview, 114
special right triangles and, 123
step-by-step triple triangle method,  

117–118

Q
quadrants, 306
quadrilaterals

area
diagonals to find a kite’s area, 198–199
key for many quadrilateral area problems, 196
kite, 194, 195, 198–199
overview, 194

parallelogram, 195
right triangles in a parallelogram problem, 

196–197
trapezoid, 195–196
triangles and ratios in a rhombus problem, 

197–198
defined, 155
definitions of seven quadrilaterals, 161–162
in general, 10
parallel-line properties, 156
properties of

in general, 166
kite, 173–174
parallel-line properties, 156
parallelograms, 166–169
special cases of the parallelogram (rhombus, 

rectangle, rhombus), 170–173
tip for learning the properties, 166
trapezoid and isosceles trapezoid, 175–176

proving that you have a particular quadrilateral
child and parent quadrilaterals, 178–179
connection between proof methods and 

properties, 178–179
definitions always work as a method of proof, 

178
kite, 189–191
methods of proof not always properties in 

reverse, 179
overview, 177
parallelogram, 180–183
properties of quadrilaterals that are reversible, 

179
rectangle, 184–186
rhombus, 184, 187
square, 184, 188–189

relationships among various, 163
similar, 213–215

R
radius (radii)

“all radii are congruent” theorem, 239, 365
defined, 238
extra radii used to solve a problem, 240–242
sphere, 299
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radius-tangent perpendicularity, 248
rays

angle bisector, 38
angle trisectors, 39
coplanar, 25
defined, 19, 23
intersecting, 24
oblique, 24
parallel, 23–24
perpendicular, 24
skew (non-coplanar), 25

real-life logic, example of, 11
reason column

definitions in, 49–50
in geometry proofs, 47
theorems and postulates in, 50–51

rectangle
diagonal of a, finding with the Pythagorean 

Theorem, 109
proving that a particular quadrilateral is a, 

184–186
rectangles

defined, 162
properties of, 170–173

reflecting lines, 324
finding, 326–328

main reflecting line, 339–341
finding the equations of two different pairs of, 

332
reflections, 324–328

glide, 338–341
glide reflection equals three, 338–339
orientation and, 326
rotations equal two, 334
translations as, 329–330

reflex angles, 27
reflexive property, 134–135, 363–364
regular polygons

area, 201–202
defined, 201

regular pyramid, 294

rhombus
area, 197–198
defined, 162
proving that a particular quadrilateral is a, 184, 

187
rhombuses, properties of, 170–173
right angles

congruent supplementary angles as, 185–186
defined, 25

right circular cone, 294
right circular cylinder, 288
right prism, 288
right triangle, 94
right triangles

30°- 60°- 90°, 120–123
45°- 45°- 90°, 118–120, 123
altitudes of, 96
hexagon made up of, 109–111
trapezoid area and, 200

rise, defined, 308
rotation angle, 333
rotations, 333–338

center of, 333–336
defined, 333
as two reflections, 334

run, defined, 308

S
same-side exterior angles, 157, 364, 365
same-side interior angles, 157, 365
SAS (Side-Angle-Side) method, 128–130, 132, 367
SAS postulate, 128, 133
SAS (side-angle-side similar) proof of triangle 

similarity, 217, 221, 367
scalene triangles

altitudes of, 96
as most numerous, 91
overview, 90–91

secant, defined, 267
secant-secant angle, 267, 268
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secant-secant power theorem, 272–274
secant-tangent angle, 267
sector area

overview, 259–260
problem, 261

segment addition, theorems, 59–63
segment subtraction, theorems, 63–66
segments

adding, 36
addition theorems, 59–63
assumptions about, 41
bisecting, 37
circle

area, 259–260, 262
defined, 259

congruent, 32
constructing parallel lines and using them to 

divide, 358–360
coplanar, 25
copying, 352
definition of, 18, 23
dividing a segment into any number of equal 

subdivisions, 359–360
intersecting, 24
measuring, 31–32
midpoint of, 37
oblique, 24
parallel, 23–24
perpendicular, 24
perpendicular bisector of, 356
skew (non-coplanar), 25
subtracting, 36
trisecting, 37–38
trisection of, 37–38

shapes
historical highlights in the study of, 9
one-dimensional, 8
overview, 8
two-dimensional

overview, 10
three-dimensional shapes compared to, 10

uses of knowledge of, 14

sides, of parallelograms, 167
side-splitter theorem, 227–229

extended, 229–231
similar, defined, 211
similar figures, lining up, 213–215
similar polygons, 212–213

aligning, 215
perimeters, 213

similar triangles
postulates and theorems, 367
proving similarity

AA proof, 217–219
CASTC (corresponding angles of similar 

triangles are congruent), 222–223
CSSTP (corresponding sides of similar triangles 

are proportional), 222–224
overview, 217
SAS proof, 217, 221
SSS proof, 217, 219–220

similarity
overview, 211
solving a problem, 215–218

skew lines, 25
skew rays, 25
skew segments, 25
slant height, pyramid’s, 294–295
slope, defined, 307
slope formula, 307–310
slope-intercept form for the equation of a line, 

318, 322, 328
soccer ball, 375–376
solid geometry

flat-top figures, 287–293
pointy-top figures, 293–299
spheres, 299–300

spheres, 299–300
square(s)

45°- 45°- 90° triangle as half a, 119–120
defined, 162
properties of, 170–173
proving that a particular quadrilateral is a, 184, 

188–189
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SSS (Side-Side-Side) method (congruent triangles), 
127–128, 130, 132, 366

SSS postulate, 127
SSS (Side-Side-Side) proof of triangle similarity, 

217, 219–220, 367
statement column, in geometry proofs, 47
straight angles, 27
straight lines, assumptions about, 41
Substitution Property, 71–72
subtracting

angles, 36
subtraction theorems, 63–66

segments, 36
subtraction theorems, 63–66
supplementary angles

congruent, as right angles, 185–186
defined, 29
proof, 157
theorem, 56–58

surface area
of flat-top figures, 290
in general, 10
of pointy-top figures, 294
sphere, 299–300

T
tangent line, 248
tangent-chord angle, 263, 264
tangents

common-tangent problem, 249–251
line tangent to a circle, 248
overview, 247
radius-tangent perpendicularity, 248

tangent-secant power theorem, 272, 273
tangent-tangent angle, 267
then clause, in chains of logic, 48–49
theorems

AAS (Angle-Angle-Side), 139
addition, 59–63
altitude-on-hypotenuse theorem, 224–227, 272

angle-bisector theorem, 231–233
chord, 239
chord-chord power theorem, 270–272
circle, 238–239

arcs, chords, and central angles, 244–245
radii, chords, and diameters, 238–239

complementary angles, 56–57
congruent supplementary angles are right 

angles, 185–186
congruent vertical angles, 69–71
definition of, 14
dunce cap theorem, 252–253
equidistance theorems, 143–146
Euclid’s proof of his first, 14
in general, 50, 55
HLR (Hypotenuse-Leg-Right angle), 142
“if angles, then sides,” 137, 281, 366
“if sides, then angles,” 137, 366
isosceles triangle, 137–139
like divisions, 66–69
like multiples, 66–69
line-plane perpendicularity, 280
midline theorem, 219–220
parallel-line, 364–365
plane that intersects two parallel planes, 285
power, 270–275
in the reason column, 50–51
secant-secant power theorem, 272–274
side-splitter theorem, 227–229

extension of, 229–231
Substitution Property, 71–72
subtraction, 63–66
supplementary angles, 56–58
tangent-secant power theorem, 272, 273
Transitive Property, 71–72
transversals, 156–160
triangle congruence, 366–367

three-dimensional shapes
overview, 10
two-dimensional shapes compared to, 10
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three-dimensional (3-D) space (3-D geometry).  
See also solid geometry

definition of, 20
determining a plane, 283
in general, 279
line and plane interactions, 284–285
lines perpendicular to planes,  

279–282
transformations, 323–341. See also isometries
Transitive Property, 71–72
translation distance, 329

finding, 331
translation line, 329

finding, 331–332
translations

defined, 328
finding the elements of, 330–333
as two reflections, 329–330

transversals
applying the theorems, 157–160
definitions and theorems, 156–157
working with more than one transversal, 

160–161
trapezoids

area, 195, 200–201
defined, 162
properties of, 175–176

triangle congruence postulates and theorems, 
366–367

triangle inequality principle, 92–94
triangle similarity

postulates and theorems, 367
proving similarity

AA proof, 217–219
CASTC (corresponding angles of similar 

triangles are congruent), 222–223
CSSTP (corresponding sides of similar triangles 

are proportional), 222–224
overview, 217
SAS proof, 217, 221
SSS proof, 217, 219–220

triangles
acute, 94

altitudes of, 96
altitudes of, 95–96
angles of, 94
area

altitudes, 95–96
basic triangle area formula, 96–98
equilateral triangle, 99
Hero’s formula, 98

base of
defined, 95
isosceles triangles, 91

centers of
centroid, 100–101
circumcenter, 103–105
incenter, 103–104
infinite series of triangles, 102–103
orthocenter, 103, 105–106

copying, 353–355
equiangular, 92
equilateral
inequality principle, 92–94
isosceles

altitudes of, 96
definition of, 91
looking for, 138

obtuse, 94, 96
overview, 89
Pythagorean triple triangles

defined, 113
families of, 116–118
further Pythagorean triple triangles,  

115–116
irreducible, 114–115
no-brainer cases, 116–117
overview, 114
special right triangles and, 123
step-by-step triple triangle method,  

117–118
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right
30°- 60°- 90°, 120–123
45°- 45°- 90°, 118–120, 123
altitudes of, 96
hexagon made up of, 109–111
trapezoid area and, 200

scalene
altitudes of, 96
as most numerous, 91
overview, 90–91

sides of, 89–90
triple triangles, Pythagorean

defined, 113
families of, 116–118
further Pythagorean triple triangles,  

115–116
irreducible, 114–115
no-brainer cases, 116–117
overview, 114
special right triangles and, 123
step-by-step triple triangle method, 117–118

trisecting
angles, 38, 39
segments, 37–38

trisection points, 37
trisectors, angle, 39
trisectors of an angle, 356
two-column geometry proofs, 45

components of, 46–47
example of non-geometry proof, 52–53
if-then logic in, 48–52

bubble logic for two-column proofs, 51–52
chains of logic, 48–49
definitions, 49–50
example of non-geometry proof, 52–53
making sure you use, 78–79
overview, 48
theorems and postulates, 50–51

overview, 45
two-dimensional shapes

overview, 10
three-dimensional shapes compared to, 10

U
UDTQCS (Un, Due, Tre, Quattro, Cinque, Sei),  

57, 59
undefined slope, 308
undefined terms, Euclid's use of, 14

V
vertex (vertices)

corresponding, 213
defined, 19
of prisms, 288

vertex angle, of isosceles triangles, 91
vertical angles

congruent, 69–71, 364
defined, 30

vertical axis, 306
vertical line equation, 319
volume

of flat-top figures, 288–290
in general, 8
of pointy-top figures, 294, 296–298
sphere, 299–300
water-into-wine volume problem, 301

W
walk-around problem, 251–253
warped figures, 41, 42
Washington, George, 9
water-into-wine volume problem, 301
working backward, in geometry proofs, 62,  

81–83

X
X angles, congruent, 69–71
x-coordinate, 306
x-y coordinate system, 305–307

Y
y-coordinate, 306
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